A JWST Near- and Mid-infrared Nebular Spectrum of the Type Ia Supernova 2021aefx

We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14 μm. This spectrum unveils the previously unobserved 2.5−5 μm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 μm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar iii] 8.99 μm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.

[1]  P. Ferruit,et al.  The in-flight noise performance of the JWST/NIRSpec detector system , 2022, Astronomical Telescopes + Instrumentation.

[2]  J. Maund,et al.  Spectropolarimetry of the Thermonuclear Supernova SN 2021rhu: High Calcium Polarization 79 Days after Peak Luminosity , 2022, The Astrophysical Journal.

[3]  S. Jha,et al.  Constraining the Progenitor System of the Type Ia Supernova 2021aefx , 2022, The Astrophysical Journal Letters.

[4]  P. Brown,et al.  A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae , 2022, The Astrophysical Journal Letters.

[5]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities , 2022, Astronomy & Astrophysics.

[6]  C. McCully,et al.  Nebular-Phase Spectra of Type Ia Supernovae from the Las Cumbres Observatory Global Supernova Project , 2022, 2201.07864.

[7]  C. Kochanek,et al.  A Rapid Ionization Change in the Nebular-phase Spectra of the Type Ia SN 2011fe , 2021, The Astrophysical Journal Letters.

[8]  F. Timmes,et al.  Stable nickel production in Type Ia supernovae: A smoking gun for the progenitor mass? , 2021, Astronomy & Astrophysics.

[9]  L. Galbany,et al.  Measuring an Off-center Detonation through Infrared Line Profiles: The Peculiar Type Ia Supernova SN 2020qxp/ASASSN-20jq , 2021, The Astrophysical Journal.

[10]  G. Rieke,et al.  Milky Way Mid-Infrared Spitzer Spectroscopic Extinction Curves: Continuum and Silicate Features , 2021, The Astrophysical Journal.

[11]  J. Buchner UltraNest - a robust, general purpose Bayesian inference engine , 2021, J. Open Source Softw..

[12]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[13]  L. Dessart,et al.  Understanding nebular spectra of Type Ia supernovae , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  K. Gordon,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. VII. Milky Way Spectrophotometric Optical-through-ultraviolet Extinction and Its R-dependence , 2019, The Astrophysical Journal.

[15]  K. Maguire,et al.  A year-long plateau in the late-time near-infrared light curves of type Ia supernovae , 2019, Nature Astronomy.

[16]  W. Hillebrandt,et al.  Sub-Chandrasekhar progenitors favoured for type Ia supernovae: Evidence from late-time spectroscopy★. , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  W. E. Kerzendorf,et al.  Limits on stable iron in Type Ia supernovae from near-infrared spectroscopy , 2018, Astronomy & Astrophysics.

[18]  M. Stritzinger,et al.  Near-infrared Spectral Evolution of the Type Ia Supernova 2014J in the Nebular Phase: Implications for the Progenitor System , 2018, The Astrophysical Journal.

[19]  W. E. Kerzendorf,et al.  Nebular spectroscopy of SN 2014J: Detection of stable nickel in near-infrared spectra , 2018, Astronomy & Astrophysics.

[20]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[21]  K. Maguire,et al.  Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties , 2018, 1803.10252.

[22]  J. Prieto,et al.  The Resolved Stellar Populations in the LEGUS Galaxies1 , 2018, 1801.05467.

[23]  M. Phillips,et al.  The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am , 2017, 1711.03940.

[24]  M. Kasliwal,et al.  Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia Supernovae , 2014, 1411.3332.

[25]  Pierre-Olivier Lagage,et al.  The mid-infrared instrument for the James Webb Space Telescope: performance and operation of the Low-Resolution Spectrometer , 2016, Astronomical Telescopes + Instrumentation.

[26]  J. Parrent,et al.  Progressive redshifts in the late-time spectra of Type Ia supernovae , 2016, 1604.01044.

[27]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[28]  Bruce Swinyard,et al.  The Mid-Infrared Instrument for JWST, II: Design and Build , 2015, 1508.02333.

[29]  K. Maguire,et al.  Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra , 2015, 1507.02501.

[30]  Ipmu,et al.  Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core , 2015, 1504.04857.

[31]  Adam A. Miller,et al.  TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM , 2013, Proceedings of the International Astronomical Union.

[32]  J. Muzerolle,et al.  The JWST Calibration Pipeline , 2015 .

[33]  J. Amiaux,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, IV: The Low-Resolution Spectrometer , 2015 .

[34]  L. Bergeron,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors , 2015 .

[35]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[36]  ARC Centre of Excellence for All-sky Astrophysics,et al.  A search for H i absorption in nearby radio galaxies using HIPASS , 2014, 1402.3530.

[37]  C. Evans,et al.  The VLT-FLAMES Tarantula Survey. XV. VFTS 822: A candidate Herbig B[e] star at low metallicity , 2014, 1401.3149.

[38]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[39]  Stuart A. Sim,et al.  Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae , 2012, 1211.3015.

[40]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[41]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES. II. HIGH-RESOLUTION OBSERVATIONS , 2011, 1108.3507.

[42]  Steven M. Crawford,et al.  PySALT: the SALT science pipeline , 2010, Astronomical Telescopes + Instrumentation.

[43]  W. Hillebrandt,et al.  Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.

[44]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[45]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[46]  W. Hillebrandt,et al.  Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs , 2007, 0710.5486.

[47]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[48]  R. Kotak,et al.  Signatures of Delayed Detonation, Asymmetry, and Electron Capture in the Mid-Infrared Spectra of Supernovae 2003hv and 2005df , 2007, astro-ph/0702117.

[49]  Bernadette Rodgers,et al.  Performance of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[50]  Gary Muller,et al.  Design of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[51]  Michael P. Smith,et al.  The prime focus imaging spectrograph for the Southern African Large Telescope: structural and mechanical design and commissioning , 2001, SPIE Astronomical Telescopes + Instrumentation.

[52]  Lifan Wang Dust around Type Ia Supernovae , 2005, astro-ph/0511003.

[53]  Walter Seifert,et al.  LUCIFER: a Multi-Mode NIR Instrument for the LBT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[54]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[55]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[56]  G. Sharpe,et al.  Double detonations at the core–envelope boundary in Type Ia supernovae , 1998 .

[57]  W. Meikle,et al.  Infrared and optical spectroscopy of type Ia supernovae in the nebular phase , 1997, astro-ph/9707119.

[58]  J. Wheeler,et al.  Maximum Brightness and Postmaximum Decline of Light Curves of Type Supernovae Ia: A Comparison of Theory and Observations , 1996, astro-ph/9609070.

[59]  J. Wheeler,et al.  Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation , 1995 .

[60]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[61]  J. Wheeler,et al.  Explosive nucleosynthesis and type I supernovae , 1984 .