Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations

The focus of this paper is on the efficient solution of boundary value problems involving the double-- curl operator. Those arise in the computation of electromagnetic fields in various settings, for instance when solving the electric or magnetic wave equation with implicit timestepping, when tackling time--harmonic problems or in the context of eddy--current computations. Their discretization is based on on N\'ed\'elec's {\bf H(curl}; $\Omega$)--conforming edge elements on unstructured grids. In order to capture local effects and to guarantee a prescribed accuracy of the approximate solution adaptive refinement of the grid controlled by a posteriori error estimators is employed. The hierarchy of meshes created through adaptive refinement forms the foundation for the fast iterative solution of the resulting linear systems by a multigrid method. The guiding principle underlying the design of both the error estimators and the multigrid method is the separate treatment of the kernel of the curl--operator and its orthogonal complement. Only on the latter we have proper ellipticity of the problem. Yet, exploiting the existence of computationally available discrete potentials for edge element spaces, we can switch to an elliptic problem in potential space to deal with nullspace of curl. Thus both cases become amenable to strategies of error estimation and multigrid solution developed for second order elliptic problems. The efficacy of the approach is confirmed by numerical experiments which cover several model problems and an application to waveguide simulation.

[1]  H. Whitney Geometric Integration Theory , 1957 .

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[4]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[5]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[6]  J. Z. Zhu,et al.  The finite element method , 1977 .

[7]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[8]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[9]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[10]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[11]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[12]  J. Simkin,et al.  Methods for eddy current computation in three dimensions , 1982 .

[13]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[14]  T. Preston,et al.  Finite Elements for Electrical Engineers , 1984 .

[15]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[16]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[17]  Thomas Weiland Die Diskretisierung der Maxwell-Gleichungen: Ein allgemeines Verfahren zur Berechnung elektromagnetischer Felder und seine Anwendung in Physik und Technik , 1986 .

[18]  D. Baldomir,et al.  Differential forms and electromagnetism in 3-dimensional Euclidean space R3 , 1986 .

[19]  J. H. Whealton,et al.  A 3D analysis of Maxwell's equations for cavities of arbitrary shape , 1986 .

[20]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[21]  R. Skeel,et al.  Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems , 1988 .

[22]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[23]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[24]  K. D. Paulsen,et al.  Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media , 1988 .

[25]  Zhang Xiaolei,et al.  Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities , 1988 .

[26]  D. Rodger,et al.  Finite element scheme for transient 3D eddy currents , 1988 .

[27]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[28]  K. Preis,et al.  On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents , 1989 .

[29]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[30]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[31]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[32]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .

[33]  Oszkar Biro,et al.  Performance of different vector potential formulations in solving multiply connected 3-D eddy current problems , 1990 .

[34]  Peter Monk,et al.  A mixed method for approximating Maxwell's equations , 1991 .

[35]  Alain Bossavit Mixed methods and the marriage between “mixed” finite elements and boundary elements , 1991 .

[36]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[37]  G. I. Costache,et al.  An Overview of the Absorbing Boundary Conditions , 1991 .

[38]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[39]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[40]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[41]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[42]  Ricardo G. Durán,et al.  On the asymptotic exactness of Bank-Weiser's estimator , 1992 .

[43]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[44]  J. Pasciak,et al.  Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems , 1994 .

[45]  Arnulf Kost,et al.  Numerische Methoden in der Berechnung elektromagnetischer Felder , 1994 .

[46]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[47]  B. M. Dillon,et al.  A comparison of formulations for the vector finite element analysis of waveguides , 1994 .

[48]  P. B. MONK,et al.  A Dispersion Analysis of Finite Element Methods for Maxwell's Equations , 1994, SIAM J. Sci. Comput..

[49]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[50]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[51]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[52]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[53]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[54]  T. Tsiboukis,et al.  A SYSTEMATIC APPROACH TO THE CONSTRUCTION OF HIGHER ORDER VECTOR FINITE ELEMENTS FOR THREE‐DIMENSIONAL ELECTROMAGNETIC FIELD COMPUTATION , 1995 .

[55]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[56]  C. Makridakis,et al.  Time-discrete finite element schemes for Maxwell's equations , 1995 .

[57]  Ronald H. W. Hoppe,et al.  Adaptive Multilevel Iterative Techniques for Nonconforming Finite Element Discretizations , 1995 .

[58]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[59]  J. Zou,et al.  Fully Discrete Nite Element Approaches for Time-dependent Maxwell Equations , 1996 .

[60]  A. Alonso Error estimators for a mixed method , 1996 .

[61]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[62]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[63]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[64]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[65]  ANDREA TOSELLIy,et al.  Overlapping Schwarz Methods for Vector Valued Elliptic Problems in Three Dimensions , 1997 .

[66]  Abdellatif Agouzal,et al.  Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes , 1998, Numerische Mathematik.

[67]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[68]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[69]  R.,et al.  RESIDUAL BASED A POSTERIORI ERROR ESTIMATORS , 1999 .

[70]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[71]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[72]  Ralf Hiptmair,et al.  Multilevel solution of the time‐harmonic Maxwell's equations based on edge elements , 1999 .

[73]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[74]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[75]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .