Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells

[1]  Tao Zheng,et al.  Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures , 1999 .

[2]  J. McBreen,et al.  Comparative Studies of the Electrochemical and Thermal Stability of Two Types of Composite Lithium Battery Electrolytes Using Boron-Based Anion Receptors , 1999 .

[3]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[4]  Kristina Edström,et al.  Characterisation of the ambient and elevated temperature performance of a graphite electrode , 1999 .

[5]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[6]  H. Maleki,et al.  Thermal Stability Studies of Li‐Ion Cells and Components , 1999 .

[7]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves , 1999 .

[8]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[9]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[10]  S. Okada,et al.  Thermal behavior of Li1-yNiO2 and the decomposition mechanism , 1998 .

[11]  J. Selman,et al.  Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells , 1998 .

[12]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[13]  J. Currie,et al.  Influence of morphology on the stability of LiNiO2 , 1997 .

[14]  Yoji Sakurai,et al.  Safety characteristics of rechargeable lithium metal cells , 1997 .

[15]  Hajime Arai,et al.  Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) , 1997 .

[16]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[17]  Yoshiyasu Saito,et al.  A calorimetric study on a cylindrical type lithium secondary battery by using a twin-type heat conduction calorimeter , 1997 .

[18]  D. Wainwright Method of evaluating relative safety of porous electrode/electrolyte combinations to spot heating , 1995 .

[19]  G. Henriksen,et al.  Safety characteristics of lithium-alloy/metal sulfide batteries , 1995 .

[20]  K. Kanamura,et al.  Electrochemical Deposition of Uniform Lithium on an Ni Substrate in a Nonaqueous Electrolyte , 1994 .

[21]  Jeff Dahn,et al.  Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .

[22]  J. Tarascon,et al.  Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells , 1993 .

[23]  D. Billaud,et al.  Electrochemical synthesis of binary graphite-lithium intercalation compounds , 1993 .

[24]  Y. Cho,et al.  Thermal Analysis of Primary Cylindrical Lithium Cells , 1991 .

[25]  J. Yamaki,et al.  Ethylene carbonate/ether solvents for electrolytes in lithium secondary batteries , 1987 .

[26]  Jaephil Cho,et al.  Electrochemical Properties and Thermal Stability of Li a Ni1 − x CO x O 2 Cathode Materials , 2000 .