Haemophilus influenzae Genome Database (HIGDB): A single point web resource for Haemophilus influenzae

BACKGROUND Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). METHODS All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. RESULTS The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides "Motif search" and "GBrowse". The HIGDB is freely accessible through the URL: http://bioserver1.physics.iisc.ernet.in/HIGDB/. DISCUSSION The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae.

[1]  R. Fleischmann,et al.  Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. , 1995, Science.

[2]  S. Schbath,et al.  Identification of DNA Motifs Implicated in Maintenance of Bacterial Core Genomes by Predictive Modeling , 2007, PLoS genetics.

[3]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[4]  M. Kilian,et al.  Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae serotype b , 1989, Infection and immunity.

[5]  V. Baranauskas,et al.  Haemophilus influenzae porine ompP2 gene transfer mediated by graphene oxide nanoparticles with effects on transformation process and virulence bacterial capacity , 2014, Journal of Nanobiotechnology.

[6]  H. Smith,et al.  Isolation and characterization of mutants of Haemophilus influenzae deficient in an adenosine 5'-triphosphate-dependent deoxyribonuclease activity , 1975, Journal of bacteriology.

[7]  K. Kim,et al.  Haemophilus influenzae Rd KW20 has virulence properties. , 2003, Journal of medical microbiology.

[8]  Sudha Ramaiah,et al.  In silico study on Penicillin derivatives and Cephalosporins for upper respiratory tract bacterial pathogens , 2013, 3 Biotech.

[9]  David Ussery,et al.  CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data , 2004, Bioinform..

[10]  Ira M. Hall,et al.  Defining the DNA uptake specificity of naturally competent Haemophilus influenzae cells , 2012, Nucleic acids research.

[11]  A. Gikas,et al.  Lower respiratory tract infections caused by Haemophilus influenzae: clinical features and predictors of outcome. , 2009, Medical science monitor : international medical journal of experimental and clinical research.

[12]  D. Kelly,et al.  The Seroepidemiology of Haemophilus influenzae Type B Prior to Introduction of an Immunization Programme in Kathmandu, Nepal , 2014, PloS one.

[13]  S. Goodgal,et al.  Sequence and uptake specificity of cloned sonicated fragments of Haemophilus influenzae DNA , 1990, Journal of bacteriology.

[14]  P. D’haeseleer What are DNA sequence motifs? , 2006, Nature Biotechnology.

[15]  T. Murphy,et al.  Haemophilus influenzae Infections in the H. influenzae Type b Conjugate Vaccine Era , 2011, Journal of Clinical Microbiology.

[16]  S. Matsushita,et al.  Radiological findings in acute Haemophilus influenzae pulmonary infection. , 2012, The British journal of radiology.

[17]  S. Madhi,et al.  Impact of conjugate Haemophilus influenzae type b (Hib) vaccine introduction in South Africa. , 2006, Bulletin of the World Health Organization.

[18]  A. Dajani,et al.  Systemic Haemophilus influenzae disease: an overview. , 1979, The Journal of pediatrics.

[19]  S. Bae,et al.  Antimicrobial Resistance in Haemophilus influenzae Respiratory Tract Isolates in Korea: Results of a Nationwide Acute Respiratory Infections Surveillance , 2009, Antimicrobial Agents and Chemotherapy.

[20]  M. Jacobs,et al.  Antimicrobial Resistance in Haemophilus influenzae , 2007, Clinical Microbiology Reviews.

[21]  Roger A. Moore,et al.  The role of substrate-binding groups in the mechanism of aspartate-beta-semialdehyde dehydrogenase. , 2004, Acta crystallographica. Section D, Biological crystallography.

[22]  R. Fleischmann,et al.  DNA repeats identify novel virulence genes in Haemophilus influenzae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Peltola Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. , 2000, Clinical microbiology reviews.

[24]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[25]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[26]  L. Moulton,et al.  Estimation of the herd protection of Haemophilus influenzae type b conjugate vaccine against radiologically confirmed pneumonia in children under 2 years old in Dhaka, Bangladesh. , 2014, Vaccine.

[27]  S. Madhi,et al.  Haemophilus influenzae type b disease in HIV-infected children: a review of the disease epidemiology and effectiveness of Hib conjugate vaccines. , 2010, Vaccine.

[28]  Radhakrishnan Sabarinathan,et al.  BSSB: BLAST Server for Structural Biologists , 2011 .

[29]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.