Species distribution models predicting climate suitability for the psyllid Trioza erytreae, vector of citrus greening disease
暂无分享,去创建一个
[1] C. Borgemeister,et al. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale , 2022, Ecol. Informatics.
[2] A. Fereres,et al. Potential areas of spread of Trioza erytreae over mainland Portugal and Spain , 2021, Journal of Pest Science.
[3] C. Borgemeister,et al. Temperature‐based phenology model of African citrus triozid (Trioza erytreae Del Guercio): Vector of citrus greening disease , 2021, Journal of Applied Entomology.
[4] T. Schartel,et al. Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa , 2021, Journal of Pest Science.
[5] J. Pereira,et al. A Model to Predict the Expansion of Trioza erytreae Throughout the Iberian Peninsula Using a Pest Risk Analysis Approach , 2020, Insects.
[6] Á. Hervalejo,et al. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula , 2019, Journal of Plant Pathology.
[7] C. Borgemeister,et al. Distribution, degree of damage and risk of spread of Trioza erytreae (Hemiptera: Triozidae) in Kenya , 2019, Journal of Applied Entomology.
[8] N. Gillett,et al. The Canadian Earth System Model version 5 (CanESM5.0.3) , 2019, Geoscientific Model Development.
[9] Olaf Conrad,et al. Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.
[10] C. Kerdelhué,et al. Climate constrains range expansion of an allochronic population of the pine processionary moth , 2016 .
[11] J. Vázquez,et al. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. , 2015 .
[12] Thomas H. Spreen,et al. An Economic Assessment of the Impact of Huanglongbing on Citrus Tree Plantings in Florida , 2014 .
[13] Robert P. Anderson,et al. Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .
[14] Matthew J. Smith,et al. Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.
[15] M. Araújo,et al. Uses and misuses of bioclimatic envelope modeling. , 2012, Ecology.
[16] S. Emori,et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .
[17] A. Peterson,et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .
[18] A. Peterson,et al. Use of niche models in invasive species risk assessments , 2011, Biological Invasions.
[19] Steven J. Phillips,et al. The art of modelling range‐shifting species , 2010 .
[20] M. Araújo,et al. BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .
[21] Alberto Jiménez-Valverde,et al. Not as good as they seem: the importance of concepts in species distribution modelling , 2008 .
[22] A. Peterson,et al. Effects of sample size on the performance of species distribution models , 2008 .
[23] Omri Allouche,et al. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .
[24] A. Hirzel,et al. Evaluating the ability of habitat suitability models to predict species presences , 2006 .
[25] M. Zappa,et al. Are niche‐based species distribution models transferable in space? , 2006 .
[26] J. Bové,et al. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus [Asia; South Africa; Brazil; Florida] , 2006 .
[27] Robert P. Anderson,et al. Maximum entropy modeling of species geographic distributions , 2006 .
[28] J. L. Tamesse,et al. Facteurs influençant la dynamique des populations du psylle africain des agrumes Trioza erytreae Del Guercio (Hemiptera: Triozidae) au Cameroun , 2004 .
[29] J. L. Tamesse,et al. Présence de Trioza erytreae Del Guercio, le psylle des agrumes, dans les principales zones écoclimatiques du Cameroun , 1999 .
[30] John Bell,et al. A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.
[31] M. Samways. Weather and monitoring the abundance of the adult citrus psylla, Trioza erytreae (Del Guercio) (Hom., Triozidae) , 1987 .
[32] J. Bové,et al. La lutte contre la maladie du "Greening" des agrumes a l'île de la Réunion. Résultats et perspectives , 1980 .
[33] H. Catling. Notes on the biology of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). , 1973 .
[34] H. Catling. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). 6. Final population studies and a discussion of population dynamics , 1972 .
[35] G. C. Green,et al. Weather-induced mortality of the citrus psylla, trioza erytreae (del guercio) (homoptera: psyllidae), a vector of greening virus, in some citrus producing areas of Southern Africa , 1971 .
[36] V. C. Moran. Preliminary observations on the choice of host plants by adults of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) , 1968 .
[37] R. Schwarz. Results of a greening survey on Sweet Orange in the major Citrus-growing areas of the Republic of South Africa. , 1967 .