Species distribution models predicting climate suitability for the psyllid Trioza erytreae, vector of citrus greening disease

[1]  C. Borgemeister,et al.  A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale , 2022, Ecol. Informatics.

[2]  A. Fereres,et al.  Potential areas of spread of Trioza erytreae over mainland Portugal and Spain , 2021, Journal of Pest Science.

[3]  C. Borgemeister,et al.  Temperature‐based phenology model of African citrus triozid (Trioza erytreae Del Guercio): Vector of citrus greening disease , 2021, Journal of Applied Entomology.

[4]  T. Schartel,et al.  Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa , 2021, Journal of Pest Science.

[5]  J. Pereira,et al.  A Model to Predict the Expansion of Trioza erytreae Throughout the Iberian Peninsula Using a Pest Risk Analysis Approach , 2020, Insects.

[6]  Á. Hervalejo,et al.  Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula , 2019, Journal of Plant Pathology.

[7]  C. Borgemeister,et al.  Distribution, degree of damage and risk of spread of Trioza erytreae (Hemiptera: Triozidae) in Kenya , 2019, Journal of Applied Entomology.

[8]  N. Gillett,et al.  The Canadian Earth System Model version 5 (CanESM5.0.3) , 2019, Geoscientific Model Development.

[9]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[10]  C. Kerdelhué,et al.  Climate constrains range expansion of an allochronic population of the pine processionary moth , 2016 .

[11]  J. Vázquez,et al.  Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. , 2015 .

[12]  Thomas H. Spreen,et al.  An Economic Assessment of the Impact of Huanglongbing on Citrus Tree Plantings in Florida , 2014 .

[13]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[14]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[15]  M. Araújo,et al.  Uses and misuses of bioclimatic envelope modeling. , 2012, Ecology.

[16]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[17]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[18]  A. Peterson,et al.  Use of niche models in invasive species risk assessments , 2011, Biological Invasions.

[19]  Steven J. Phillips,et al.  The art of modelling range‐shifting species , 2010 .

[20]  M. Araújo,et al.  BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .

[21]  Alberto Jiménez-Valverde,et al.  Not as good as they seem: the importance of concepts in species distribution modelling , 2008 .

[22]  A. Peterson,et al.  Effects of sample size on the performance of species distribution models , 2008 .

[23]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[24]  A. Hirzel,et al.  Evaluating the ability of habitat suitability models to predict species presences , 2006 .

[25]  M. Zappa,et al.  Are niche‐based species distribution models transferable in space? , 2006 .

[26]  J. Bové,et al.  Huanglongbing: a destructive, newly-emerging, century-old disease of citrus [Asia; South Africa; Brazil; Florida] , 2006 .

[27]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[28]  J. L. Tamesse,et al.  Facteurs influençant la dynamique des populations du psylle africain des agrumes Trioza erytreae Del Guercio (Hemiptera: Triozidae) au Cameroun , 2004 .

[29]  J. L. Tamesse,et al.  Présence de Trioza erytreae Del Guercio, le psylle des agrumes, dans les principales zones écoclimatiques du Cameroun , 1999 .

[30]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[31]  M. Samways Weather and monitoring the abundance of the adult citrus psylla, Trioza erytreae (Del Guercio) (Hom., Triozidae) , 1987 .

[32]  J. Bové,et al.  La lutte contre la maladie du "Greening" des agrumes a l'île de la Réunion. Résultats et perspectives , 1980 .

[33]  H. Catling Notes on the biology of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). , 1973 .

[34]  H. Catling The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). 6. Final population studies and a discussion of population dynamics , 1972 .

[35]  G. C. Green,et al.  Weather-induced mortality of the citrus psylla, trioza erytreae (del guercio) (homoptera: psyllidae), a vector of greening virus, in some citrus producing areas of Southern Africa , 1971 .

[36]  V. C. Moran Preliminary observations on the choice of host plants by adults of the citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) , 1968 .

[37]  R. Schwarz Results of a greening survey on Sweet Orange in the major Citrus-growing areas of the Republic of South Africa. , 1967 .