Fast MSM modulators based on the two-dimensional Franz-Keldysh effect in MQW structures

We report on a novel electro-optic modulator structure based on the two-dimensional Franz- Keldysh effect (2D-FKE) in multiple quantum well (MQW) structures. Due to the increased electron-hole interaction in these quasi-two-dimensional systems, strong excitonic resonances are observed even at room temperature. If an electric field is applied parallel to the layers of a MQW structure, very low electric fields (10 - 30 kV/cm) are sufficient to cause field ionization of the excitons, because of their weak in-plane confinement. Large absorption changes as high as 7000 cm-1 with field changes of only 30 kV/cm have been observed in GaAs/AlGaAs-MQWs. In addition, an increase of the absorption below and oscillations of the absorption coefficient above each subband transition are obtained due to the two-dimensional Franz-Keldysh effect. These features have been applied in our novel electro- optic modulator structure. Using interdigitated metal-semiconductor-metal (MSM) contacts, high in-plane electric fields can be generated with moderate voltages. Furthermore the low capacitance of these MSM structures is particularly favorable for high speed applications. In a MSM-modulator structure, consisting of 75 GaAs/AlGaAs quantum wells with a distributed Bragg-reflector (DBR) below the MQW-layers, a maximum contrast ratio of 5:1 without using any cavity effects has been achieved with a voltage swing of 20 V.