Modeling and forecasting interval time series with threshold models

This paper proposes threshold models to analyze and forecast interval-valued time series. A relatively simple algorithm is proposed to obtain least square estimates of the threshold and slope parameters. The construction of forecasts based on the proposed model and methods for the analysis of their forecast performance are also introduced and discussed, as well as forecasting procedures based on the combination of different models. To illustrate the usefulness of the proposed methods, an empirical application on a weekly sample of S&P500 index returns is provided. The results obtained are encouraging and compare very favorably to available procedures.

[1]  Howell Tong,et al.  Threshold Models in Time Series Analysis-30 Years On , 2011 .

[2]  Timo Teräsvirta,et al.  Testing the adequacy of smooth transition autoregressive models , 1996 .

[3]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[4]  J. A. Lane,et al.  FORECASTING EXPONENTIAL AUTOREGRESSIVE MODELS OF ORDER 1 , 1989 .

[5]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[6]  Michael W. Brandt,et al.  Volatility Forecasting With Range-Based EGARCH Models , 2006 .

[7]  Michael P. Clements,et al.  The Performance of Alternative Forecasting Methods for SETAR Models , 1997 .

[8]  Berlin Wu,et al.  Evaluating forecasting performance for interval data , 2008, Comput. Math. Appl..

[9]  Yin-Wong Cheung,et al.  An Empirical Model of Daily Highs and Lows , 2006 .

[10]  S. Beckers,et al.  Variances of Security Price Returns Based on High , 1983 .

[11]  Chris Chatfield,et al.  What is the ‘best’ method of forecasting? , 1988 .

[12]  R. Chou,et al.  Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model , 2005 .

[13]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[14]  Hui Zou,et al.  Combining time series models for forecasting , 2004, International Journal of Forecasting.

[15]  L. Billard,et al.  Regression Analysis for Interval-Valued Data , 2000 .

[16]  S. Yakowitz NEAREST‐NEIGHBOUR METHODS FOR TIME SERIES ANALYSIS , 1987 .

[17]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[18]  Guoqiang Peter Zhang,et al.  Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.

[19]  Fabio Spagnolo,et al.  Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting , 2006 .

[20]  R. Tsay Testing and modeling multivariate threshold models , 1998 .

[21]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[22]  A. Zellner,et al.  A Note on Aggregation, Disaggregation and Forecasting Performance , 2000 .

[23]  Jean-Yves Pitarakis,et al.  Estimation and Model Selection Based Inference in Single and Multiple Threshold Models , 2002 .

[24]  Chenyi Hu,et al.  An Application of Interval Methods to Stock Market Forecasting , 2007, Reliab. Comput..

[25]  Chenyi Hu,et al.  Impacts of Interval Computing on Stock Market Variability Forecasting , 2008 .

[26]  Simon M. Potter A Nonlinear Approach to U.S. GNP , 1993 .

[27]  Chris Chatfield,et al.  Model uncertainty and forecast accuracy , 1996 .

[28]  Massimo Guidolin,et al.  Non-Linear Predictability in Stock and Bond Returns: When and Where is it Exploitable? , 2009 .

[29]  Timo Teräsvirta,et al.  Modelling Non-Linear Economic Relationships , 1993 .

[30]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[31]  Michael P. Clements,et al.  Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment , 2000 .

[32]  Francisco de A. T. de Carvalho,et al.  Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..

[33]  Manabu Ichino,et al.  Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..

[34]  Ronald MacDonald,et al.  Towards the fundamentals of technical analysis: analysing the information content of high, low and close prices , 2002 .

[35]  Francisco de A. T. de Carvalho,et al.  Forecasting models for interval-valued time series , 2008, Neurocomputing.

[36]  Nilss Olekalns,et al.  Exchange Rate Instability: A Threshold Autoregressive Approach , 2001 .

[37]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[38]  Spyros Makridakis,et al.  Why combining works , 1989 .

[39]  J. Bai,et al.  Estimating Multiple Breaks One at a Time , 1997, Econometric Theory.

[40]  G. C. Tiao,et al.  Some advances in non‐linear and adaptive modelling in time‐series , 1994 .

[41]  Fabio H. Nieto Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data , 2005 .

[42]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[43]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[44]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[45]  Jing Li,et al.  Testing Granger Causality in the presence of threshold effects , 2006 .

[46]  Philip Rothman,et al.  Forecasting Asymmetric Unemployment Rates , 1998, Review of Economics and Statistics.

[47]  Jan G. De Gooijer,et al.  On forecasting SETAR processes , 1998 .

[48]  Simon M. Potter A Nonlinear Approach to US GNP , 1995 .

[49]  J. Gooijer,et al.  Some recent developments in non-linear time series modelling, testing, and forecasting☆ , 1992 .

[50]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[51]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[52]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[53]  Javier Arroyo,et al.  Forecasting with Interval and Histogram Data. Some Financial Applications , 2011 .

[54]  Kin Keung Lai,et al.  Interval Time Series Analysis with an Application to the Sterling-Dollar Exchange Rate , 2008, J. Syst. Sci. Complex..

[55]  Hung T. Nguyen,et al.  Fundamentals of Statistics with Fuzzy Data , 2006, Studies in Fuzziness and Soft Computing.

[56]  Michael P. Clements,et al.  A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models , 1999 .

[57]  Javier Arroyo,et al.  iMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data , 2007, Neural Processing Letters.

[58]  Carlos Maté,et al.  Electric power demand forecasting using interval time series: A comparison between VAR and iMLP , 2010 .

[59]  Javier Arroyo,et al.  Different Approaches to Forecast Interval Time Series: A Comparison in Finance , 2011 .

[60]  G. C. Tiao,et al.  Journal of the American Statistical Association Forecasting the U.s. Unemployment Rate Forecasting the U.s. Unemployment Rate , 2022 .

[61]  Jean-Yves Pitarakis,et al.  Model Selection Uncertainty and Detection of Threshold Effects , 2006 .

[62]  Andre Luis Santiago Maia,et al.  Holt’s exponential smoothing and neural network models for forecasting interval-valued time series , 2011 .

[63]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .