Tracking Monotonically Advancing Boundaries in Image Sequences Using Graph Cuts and Recursive Kernel Shape Priors

We introduce a probabilistic computer vision technique to track monotonically advancing boundaries of objects within image sequences. Our method incorporates a novel technique for including statistical prior shape information into graph-cut based segmentation, with the aid of a majorization-minimization algorithm. Extension of segmentation from single images to image sequences then follows naturally using sequential Bayesian estimation. Our methodology is applied to two unrelated sets of real biomedical imaging data, and a set of synthetic images. Our results are shown to be superior to manual segmentation.

[1]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[2]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Hervé Delingette,et al.  An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology , 2007, FIMH.

[5]  B. S. Manjunath,et al.  Shape prior segmentation of multiple objects with graph cuts , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Thomas S. Huang,et al.  Parametric contour tracking using unscented Kalman filter , 2002, Proceedings. International Conference on Image Processing.

[7]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[8]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[9]  A. Charles,et al.  Cortical Spreading Depression—New Insights and Persistent Questions , 2009, Cephalalgia : an international journal of headache.

[10]  A. A. Leão,et al.  SPREADING DEPRESSION OF ACTIVITY IN THE CEREBRAL CORTEX , 1944 .

[11]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[12]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[13]  Arthur W Toga,et al.  Biphasic direct current shift, haemoglobin desaturation and neurovascular uncoupling in cortical spreading depression. , 2010, Brain : a journal of neurology.

[14]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[15]  V. Fast,et al.  Role of wavefront curvature in propagation of cardiac impulse. , 1997, Cardiovascular research.

[16]  Mark Zajac,et al.  The moving boundary node method: A level set-based, finite volume algorithm with applications to cell motility , 2010, J. Comput. Phys..

[17]  David M. Holland,et al.  A fast Bayesian method for updating and forecasting hourly ozone levels , 2009, Environmental and Ecological Statistics.

[18]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[19]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[20]  David C. Hogg,et al.  An efficient method for contour tracking using active shape models , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[21]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[22]  T. Chou,et al.  A mathematical model of intercellular signaling during epithelial wound healing. , 2009, Journal of theoretical biology.

[23]  P. Chavrier,et al.  Collective migration of an epithelial monolayer in response to a model wound , 2007, Proceedings of the National Academy of Sciences.

[24]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Abdol-Reza Mansouri,et al.  Region Tracking via Level Set PDEs without Motion Computation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[27]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  D A Lauffenburger,et al.  Mathematical model for the effects of adhesion and mechanics on cell migration speed. , 1991, Biophysical journal.

[29]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[30]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[31]  Yogesh Rathi,et al.  Graph Cut Segmentation with Nonlinear Shape Priors , 2007, 2007 IEEE International Conference on Image Processing.

[32]  Markus Bundschus,et al.  Towards a Next-Generation Matrix Library for Java , 2009, 2009 33rd Annual IEEE International Computer Software and Applications Conference.

[33]  Anil K. Jain,et al.  Object Tracking Using Deformable Templates , 1998, ICCV.

[34]  Scott T. Acton,et al.  Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes , 2004, IEEE Transactions on Biomedical Engineering.

[35]  Ola Hössjer,et al.  Fast kriging of large data sets with Gaussian Markov random fields , 2008, Comput. Stat. Data Anal..

[36]  Daniel Cremers,et al.  Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation , 2006, International Journal of Computer Vision.

[37]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[38]  Natan Peterfreund,et al.  Robust Tracking of Position and Velocity With Kalman Snakes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[40]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Adel Said Elmaghraby,et al.  Graph cut optimization for the Mumford-Shah model , 2007 .

[42]  Stanislav Y Shvartsman,et al.  Role of boundary conditions in an experimental model of epithelial wound healing. , 2006, American journal of physiology. Cell physiology.

[43]  J. Sethian,et al.  Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method , 2006, Journal of mathematical biology.

[44]  Tao Zhang,et al.  Interactive graph cut based segmentation with shape priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[45]  Gregory G. Slabaugh,et al.  Graph cuts segmentation using an elliptical shape prior , 2005, IEEE International Conference on Image Processing 2005.

[46]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[47]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[48]  Yogesh Rathi,et al.  A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  D Chien,et al.  MR diffusion imaging of cerebral infarction in humans. , 1992, AJNR. American journal of neuroradiology.

[50]  PeterfreundNatan Robust Tracking of Position and Velocity With Kalman Snakes , 1999 .

[51]  Olga Veksler,et al.  Star Shape Prior for Graph-Cut Image Segmentation , 2008, ECCV.

[52]  Qing Yang,et al.  A Bayesian approach for image segmentation with shape priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  John S. Lowengrub,et al.  An improved geometry-aware curvature discretization for level set methods: Application to tumor growth , 2006, J. Comput. Phys..

[54]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[55]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Namrata Vaswani,et al.  Deform PF-MT: Particle Filter With Mode Tracker for Tracking Nonaffine Contour Deformations , 2010, IEEE Transactions on Image Processing.

[58]  Ramin Zabih,et al.  Graph Cuts Segmentation with Statistical Shape Priors for Medical Images , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.