Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework

This paper proposes a new registration algorithm, Co-variance Driven Correspondences (CDC), that depends fundamentally on the estimation of uncertainty in point correspondences. This uncertainty is derived from the covariance matrices of the individual point locations and from the covariance matrix of the estimated transformation parameters. Based on this uncertainty, CDC uses a robust objective function and an EM-like algorithm to simultaneously estimate the transformation parameters, their covariance matrix, and the likely correspondences. Unlike the Robust Point Matching (RPM) algorithm, CDC requires neither an annealing schedule nor an explicit outlier process. Experiments on synthetic and real images using a polynomial transformation models in 2D and in 3D show that CDC has a broader domain of convergence than the well-known Iterative Closest Point (ICP) algorithm and is more robust to missing or extraneous structures in the data than RPM.

[1]  Andrew W. Fitzgibbon Robust registration of 2D and 3D point sets , 2003, Image Vis. Comput..

[2]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[3]  Edwin R. Hancock,et al.  Iterative Procrustes alignment with the EM algorithm , 2002, Image Vis. Comput..

[4]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[5]  Robust Registration of 2 D and 3 D Point Sets , 2001 .

[6]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[7]  C. Stewart Uncertainty-Driven, Point-Based Image Registration , 2006, Handbook of Mathematical Models in Computer Vision.

[8]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[9]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[10]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[11]  Heinz Hügli,et al.  A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[12]  Chia-Ling Tsai,et al.  The dual-bootstrap iterative closest point algorithm with application to retinal image registration , 2003, IEEE Transactions on Medical Imaging.

[13]  Y. Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, CVPR 2004.

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[16]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[17]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Anand Rangarajan,et al.  Unsupervised learning of an Atlas from unlabeled point-sets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[20]  Carl-Fredrik Westin,et al.  Robust Generalized Total Least Squares Iterative Closest Point Registration , 2004, MICCAI.

[21]  Philip David,et al.  SoftPOSIT: Simultaneous Pose and Correspondence Determination , 2002, ECCV.

[22]  M. Brooks,et al.  What value covariance information in estimating vision parameters? , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[24]  Charles V. Stewart,et al.  Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[27]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..