CRISPR‐Net: A Recurrent Convolutional Network Quantifies CRISPR Off‐Target Activities with Mismatches and Indels

[1]  Richard L. Frock,et al.  Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases , 2014, Nature Biotechnology.

[2]  J. Joung,et al.  CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets , 2017, Nature Methods.

[3]  Daniel R. Zerbino,et al.  Ensembl 2016 , 2015, Nucleic Acids Res..

[4]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[5]  Nicholas J Kramer,et al.  CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9orf72 dipeptide repeat protein toxicity , 2018, Nature Genetics.

[6]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[7]  Keith Lindsey,et al.  CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off‐Target Evaluation, and Strategies to Mitigate Off‐Target Effects , 2020, Advanced science.

[8]  Pietro Liò,et al.  Automated Reasoning for Systems Biology and Medicine , 2019, Computational Biology.

[9]  Erik L. G. Wernersson,et al.  BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks , 2017, Nature Communications.

[10]  Xiaohui S. Xie,et al.  DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences , 2015, bioRxiv.

[11]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[12]  Gang Bao,et al.  CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences , 2014, Nucleic acids research.

[13]  Beilun Wang,et al.  Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks , 2016, PSB.

[14]  Ting Liu,et al.  Document Modeling with Gated Recurrent Neural Network for Sentiment Classification , 2015, EMNLP.

[15]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[16]  James J. Collins,et al.  A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans , 2017, Nature Microbiology.

[17]  SchmidhuberJürgen,et al.  2005 Special Issue , 2005 .

[18]  Jürgen Schmidhuber,et al.  Framewise phoneme classification with bidirectional LSTM and other neural network architectures , 2005, Neural Networks.

[19]  Mazhar Adli,et al.  Cas9-chromatin binding information enables more accurate CRISPR off-target prediction , 2015, Nucleic acids research.

[20]  M. DePristo,et al.  Deep learning of genomic variation and regulatory network data. , 2018, Human molecular genetics.

[21]  J. Kent,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[22]  Yi Zheng,et al.  Recognition of CRISPR/Cas9 off‐target sites through ensemble learning of uneven mismatch distributions , 2018, Bioinform..

[23]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[24]  Leslie S. Edwards,et al.  Mapping the genomic landscape of CRISPR–Cas9 cleavage , 2017, Nature Methods.

[25]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[26]  Jennifer Listgarten,et al.  Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs , 2018, Nature Biomedical Engineering.

[27]  Antonio J Giraldez,et al.  CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing , 2017, bioRxiv.

[28]  George Trigeorgis,et al.  Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, Molecular systems biology.

[30]  J. L. Mateo,et al.  CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool , 2015, PloS one.

[31]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[32]  Sungroh Yoon,et al.  Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity , 2018, Nature Biotechnology.

[33]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[34]  Jan Gorodkin,et al.  CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters , 2018, Genome Biology.

[35]  Jeremy Stinson,et al.  CRISPR off-target analysis in genetically engineered rats and mice , 2018, Nature Methods.

[36]  Ka-Chun Wong,et al.  Off-target predictions in CRISPR-Cas9 gene editing using deep learning , 2018, Bioinform..

[37]  Randall J. Platt,et al.  Therapeutic genome editing: prospects and challenges , 2015, Nature Medicine.

[38]  Guohui Chuai,et al.  DeepCRISPR: optimized CRISPR guide RNA design by deep learning , 2018, Genome Biology.

[39]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[40]  Ole Winther,et al.  DeepLoc: prediction of protein subcellular localization using deep learning , 2017, Bioinform..

[41]  Padideh Danaee,et al.  A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential , 2017, bioRxiv.

[42]  Jianhui Gong,et al.  Correction of a pathogenic gene mutation in human embryos , 2017, Nature.