Polynomial decompositions with invariance and positivity inspired by tensors
暂无分享,去创建一个
Tim Netzer | Gemma De las Cuevas | Andreas Klingler | Tim Netzer | G. D. L. Cuevas | Andreas Klingler
[1] Tim Netzer,et al. Mixed states in one spatial dimension: Decompositions and correspondence with nonnegative matrices , 2019, Journal of Mathematical Physics.
[2] J. Cirac,et al. Fundamental limitations in the purifications of tensor networks , 2015, 1512.05709.
[3] Robert J. MacG. Dawson. Homology of weighted simplicial complexes , 1990 .
[4] P. McMullen. A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .
[5] Robin Wilson,et al. Modern Graph Theory , 2013 .
[6] D. Kamenetsky. Symmetry Groups , 2003 .
[7] Rekha R. Thomas,et al. Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..
[8] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[9] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[11] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[12] Román Orús,et al. Tensor networks for complex quantum systems , 2018, Nature Reviews Physics.
[13] Yaroslav Shitov,et al. A Counterexample to Comon's Conjecture , 2017, SIAM J. Appl. Algebra Geom..
[14] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[15] Rekha R. Thomas,et al. Positive semidefinite rank , 2014, Math. Program..
[16] J Eisert,et al. Matrix-product operators and states: NP-hardness and undecidability. , 2014, Physical review letters.
[17] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[18] R. Tennant. Algebra , 1941, Nature.
[19] Tim Netzer,et al. Approximate tensor decompositions: Disappearance of many separations , 2020, Journal of Mathematical Physics.