Packing chromatic vertex-critical graphs

For a non-decreasing sequence of positive integers $S = (s_1,s_2,\ldots)$, the {\em $S$-packing chromatic number} $\chi_S(G)$ of $G$ is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $X_i$, $i \in [k]$, where vertices in $X_i$ are pairwise at distance greater than $s_i$. In this paper we introduce $S$-packing chromatic vertex-critical graphs, $\chi_{S}$-critical for short, as the graphs in which $\chi_{S}(G-u) 1$. We also deal with $k$-$\chi_{S}$-criticality of trees and caterpillars.

[1]  Danilo Korze,et al.  Packing coloring of generalized Sierpinski graphs , 2019, Discret. Math. Theor. Comput. Sci..

[2]  Olivier Togni,et al.  Packing colorings of subcubic outerplanar graphs , 2018 .

[3]  Ernst J. Joubert,et al.  A lower bound for the packing chromatic number of the Cartesian product of cycles , 2013 .

[4]  W. Goddard,et al.  The S-packing chromatic number of a graph , 2012, Discuss. Math. Graph Theory.

[5]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..

[6]  Hamid Maarouf,et al.  Gröbner Bases Techniques for an $S$-Packing $k$-Coloring of a Graph , 2017, Electron. J. Comb..

[7]  Jirí Fiala,et al.  Complexity of the Packing Coloring Problem for Trees , 2008, WG.

[8]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[9]  Mario Valencia-Pabon,et al.  The packing chromatic number of hypercubes , 2015, Discret. Appl. Math..

[10]  Stanislav Jendrol',et al.  Facial packing vertex-coloring of subdivided plane graphs , 2019, Discret. Appl. Math..

[11]  Christian Sloper AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 309–321 An eccentric coloring of trees , 2022 .

[12]  Alexandr Kostochka,et al.  Packing chromatic number of subcubic graphs , 2017 .

[13]  Olivier Togni,et al.  S-packing colorings of cubic graphs , 2016, Discret. Math..

[14]  Olivier Togni,et al.  On S-packing edge-colorings of cubic graphs , 2019, Discret. Appl. Math..

[15]  Olivier Togni,et al.  On packing chromatic number of subcubic outerplanar graphs , 2019, Discret. Appl. Math..

[16]  Jasmina Ferme,et al.  Graphs that are Critical for the Packing Chromatic Number , 2019, Discuss. Math. Graph Theory.

[17]  Barnaby Martin,et al.  The packing chromatic number of the infinite square lattice is less than or equal to 16 , 2015, ArXiv.

[18]  Alexandr V. Kostochka,et al.  Packing Chromatic Number of Subdivisions of Cubic Graphs , 2019, Graphs Comb..

[19]  Bostjan Bresar,et al.  An infinite family of subcubic graphs with unbounded packing chromatic number , 2018, Discret. Math..

[20]  Nicolas Gastineau,et al.  Dichotomies properties on computational complexity of S-packing coloring problems , 2013, Discret. Math..

[21]  Sandi Klavzar,et al.  Packing chromatic number under local changes in a graph , 2017, Discret. Math..

[22]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[23]  Alexandr V. Kostochka,et al.  Packing chromatic number of cubic graphs , 2018, Discret. Math..

[24]  Barnaby Martin,et al.  The packing chromatic number of the infinite square lattice is between 13 and 15 , 2017, Discret. Appl. Math..

[25]  Aleksander Vesel,et al.  Modeling the packing coloring problem of graphs , 2015 .

[26]  Éric Sopena,et al.  Packing colouring of some classes of cubic graphs , 2018, ArXiv.

[27]  Wilfried Imrich,et al.  Topics in Graph Theory: Graphs and Their Cartesian Product , 2008 .

[28]  Wayne Goddard,et al.  A note on S-packing colorings of lattices , 2014, Discret. Appl. Math..

[29]  Tommy R. Jensen,et al.  Dense critical and vertex-critical graphs , 2002, Discret. Math..

[30]  Sandi Klavžar,et al.  Packing chromatic number versus chromatic and clique number , 2017, 1707.04910.