Packing chromatic vertex-critical graphs
暂无分享,去创建一个
[1] Danilo Korze,et al. Packing coloring of generalized Sierpinski graphs , 2019, Discret. Math. Theor. Comput. Sci..
[2] Olivier Togni,et al. Packing colorings of subcubic outerplanar graphs , 2018 .
[3] Ernst J. Joubert,et al. A lower bound for the packing chromatic number of the Cartesian product of cycles , 2013 .
[4] W. Goddard,et al. The S-packing chromatic number of a graph , 2012, Discuss. Math. Graph Theory.
[5] Sandi Klavzar,et al. On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..
[6] Hamid Maarouf,et al. Gröbner Bases Techniques for an $S$-Packing $k$-Coloring of a Graph , 2017, Electron. J. Comb..
[7] Jirí Fiala,et al. Complexity of the Packing Coloring Problem for Trees , 2008, WG.
[8] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[9] Mario Valencia-Pabon,et al. The packing chromatic number of hypercubes , 2015, Discret. Appl. Math..
[10] Stanislav Jendrol',et al. Facial packing vertex-coloring of subdivided plane graphs , 2019, Discret. Appl. Math..
[11] Christian Sloper. AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 309–321 An eccentric coloring of trees , 2022 .
[12] Alexandr Kostochka,et al. Packing chromatic number of subcubic graphs , 2017 .
[13] Olivier Togni,et al. S-packing colorings of cubic graphs , 2016, Discret. Math..
[14] Olivier Togni,et al. On S-packing edge-colorings of cubic graphs , 2019, Discret. Appl. Math..
[15] Olivier Togni,et al. On packing chromatic number of subcubic outerplanar graphs , 2019, Discret. Appl. Math..
[16] Jasmina Ferme,et al. Graphs that are Critical for the Packing Chromatic Number , 2019, Discuss. Math. Graph Theory.
[17] Barnaby Martin,et al. The packing chromatic number of the infinite square lattice is less than or equal to 16 , 2015, ArXiv.
[18] Alexandr V. Kostochka,et al. Packing Chromatic Number of Subdivisions of Cubic Graphs , 2019, Graphs Comb..
[19] Bostjan Bresar,et al. An infinite family of subcubic graphs with unbounded packing chromatic number , 2018, Discret. Math..
[20] Nicolas Gastineau,et al. Dichotomies properties on computational complexity of S-packing coloring problems , 2013, Discret. Math..
[21] Sandi Klavzar,et al. Packing chromatic number under local changes in a graph , 2017, Discret. Math..
[22] Wayne Goddard,et al. Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..
[23] Alexandr V. Kostochka,et al. Packing chromatic number of cubic graphs , 2018, Discret. Math..
[24] Barnaby Martin,et al. The packing chromatic number of the infinite square lattice is between 13 and 15 , 2017, Discret. Appl. Math..
[25] Aleksander Vesel,et al. Modeling the packing coloring problem of graphs , 2015 .
[26] Éric Sopena,et al. Packing colouring of some classes of cubic graphs , 2018, ArXiv.
[27] Wilfried Imrich,et al. Topics in Graph Theory: Graphs and Their Cartesian Product , 2008 .
[28] Wayne Goddard,et al. A note on S-packing colorings of lattices , 2014, Discret. Appl. Math..
[29] Tommy R. Jensen,et al. Dense critical and vertex-critical graphs , 2002, Discret. Math..
[30] Sandi Klavžar,et al. Packing chromatic number versus chromatic and clique number , 2017, 1707.04910.