PR ] 2 7 N ov 2 01 8 CENTRAL LIMIT THEOREMS IN THE CONFIGURATION MODEL

We prove a general normal approximation theorem for local graph statistics in the configuration model, together with an explicit bound on the error in the approximation with respect to the Wasserstein metric. Such statistics take the form T := ∑ v∈V Hv, where V is the vertex set, and Hv depends on a neighbourhood in the graph around v of size at most l. The error bound is expressed in terms of l, |V |, an almost sure bound on Hv, the maximum vertex degree dmax and the variance of T . Under suitable assumptions on the convergence of the empirical degree distributions to a limiting distribution, we deduce that the size of the giant component in the configuration model has asymptotically Gaussian fluctuations.

[1]  Remco van der Hofstad,et al.  Limit laws for self-loops and multiple edges in the configuration model , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[2]  The asymptotic variance of the giant component of configuration model random graphs , 2017 .

[3]  Wasiur R. KhudaBukhsh,et al.  Functional Central Limit Theorem for Susceptible-Infected Process On Configuration Model Graphs , 2017, 1703.06328.

[4]  Oliver Riordan,et al.  The Phase Transition in the Configuration Model , 2011, Combinatorics, Probability and Computing.

[5]  Béla Bollobás,et al.  Asymptotic normality of the size of the giant component via a random walk , 2012, J. Comb. Theory, Ser. B.

[6]  Louis H. Y. Chen,et al.  Stein couplings for normal approximation , 2010, 1003.6039.

[7]  Svante Janson,et al.  Asymptotic equivalence and contiguity of some random graphs , 2008, Random Struct. Algorithms.

[8]  Svante Janson,et al.  Susceptibility in subcritical random graphs , 2008, 0806.0252.

[9]  S. Janson,et al.  Asymptotic normality of the k-core in random graphs , 2006, math/0612827.

[10]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[11]  Martin Raič,et al.  Normal Approximation by Stein ’ s Method , 2003 .

[12]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[13]  Andrzej Rucinski,et al.  A central limit theorem for decomposable random variables with applications to random graphs , 1989, J. Comb. Theory B.

[14]  Andrzej Ruciflski When are small subgraphs of a random graph normally distributed , 1988 .

[15]  C. Stein Approximate computation of expectations , 1986 .

[16]  Y. Rozanov Markov random fields , 1984 .

[17]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[18]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[19]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .