PR ] 2 7 N ov 2 01 8 CENTRAL LIMIT THEOREMS IN THE CONFIGURATION MODEL
暂无分享,去创建一个
[1] Remco van der Hofstad,et al. Limit laws for self-loops and multiple edges in the configuration model , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[2] The asymptotic variance of the giant component of configuration model random graphs , 2017 .
[3] Wasiur R. KhudaBukhsh,et al. Functional Central Limit Theorem for Susceptible-Infected Process On Configuration Model Graphs , 2017, 1703.06328.
[4] Oliver Riordan,et al. The Phase Transition in the Configuration Model , 2011, Combinatorics, Probability and Computing.
[5] Béla Bollobás,et al. Asymptotic normality of the size of the giant component via a random walk , 2012, J. Comb. Theory, Ser. B.
[6] Louis H. Y. Chen,et al. Stein couplings for normal approximation , 2010, 1003.6039.
[7] Svante Janson,et al. Asymptotic equivalence and contiguity of some random graphs , 2008, Random Struct. Algorithms.
[8] Svante Janson,et al. Susceptibility in subcritical random graphs , 2008, 0806.0252.
[9] S. Janson,et al. Asymptotic normality of the k-core in random graphs , 2006, math/0612827.
[10] Nicholas C. Wormald,et al. Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.
[11] Martin Raič,et al. Normal Approximation by Stein ’ s Method , 2003 .
[12] Bruce A. Reed,et al. A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.
[13] Andrzej Rucinski,et al. A central limit theorem for decomposable random variables with applications to random graphs , 1989, J. Comb. Theory B.
[14] Andrzej Ruciflski. When are small subgraphs of a random graph normally distributed , 1988 .
[15] C. Stein. Approximate computation of expectations , 1986 .
[16] Y. Rozanov. Markov random fields , 1984 .
[17] Béla Bollobás,et al. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..
[18] Edward A. Bender,et al. The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.
[19] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .