Uncertain Curve Simplification
暂无分享,去创建一个
[1] M. Buchin,et al. Discrete Fréchet Distance for Uncertain Points , 2016 .
[2] Leonidas J. Guibas,et al. Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.
[3] David G. Kirkpatrick,et al. Competitive query strategies for minimising the ply of the potential locations of moving points , 2013, SoCG '13.
[4] Pankaj K. Agarwal,et al. Nearest-Neighbor Searching Under Uncertainty I , 2017, Discrete & Computational Geometry.
[5] Hee-Kap Ahn,et al. Computing the Discrete FRéChet Distance with Imprecise Input , 2010, Int. J. Comput. Geom. Appl..
[6] Maarten Löffler,et al. Flow Computations on Imprecise Terrains , 2011, WADS.
[7] Kevin Buchin,et al. Progressive Simplification of Polygonal Curves , 2020, Comput. Geom..
[8] A. Melkman,et al. On Polygonal Chain Approximation , 1988 .
[9] Hiroshi Imai,et al. Computational-geometric methods for polygonal approximations of a curve , 1986, Comput. Vis. Graph. Image Process..
[10] Subhash Suri,et al. On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.
[11] Nabil H. Mustafa,et al. Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.
[12] Joseph S. B. Mitchell,et al. Preprocessing Imprecise Points and Splitting Triangulations , 2010, SIAM J. Comput..
[13] Michael T. Goodrich,et al. Efficiently Approximating Polygonal Paths in Three and Higher Dimensions , 1998, SCG '98.
[14] Maarten Löffler,et al. Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.
[15] Maarten Löffler,et al. Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.
[16] Maarten Löffler,et al. Geometric Computations on Indecisive Points , 2011, WADS.
[17] Maarten Löffler,et al. Data Imprecision in Computational Geometry , 2009 .
[18] Maarten Löffler,et al. Shape Fitting on Point Sets with Probability Distributions , 2008, ESA.
[19] Maarten Löffler,et al. Removing local extrema from imprecise terrains , 2010, Comput. Geom..
[20] Karl Bringmann,et al. Polyline Simplification has Cubic Complexity , 2018, SoCG.
[21] Kevin Buchin,et al. Model-Based Segmentation and Classification of Trajectories , 2017, Algorithmica.
[22] Leonidas J. Guibas,et al. Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..
[23] Maarten Löffler,et al. Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.
[24] Leizhen Cai,et al. Computing Visibility Information in an Inaccurate Simple Polygon , 1997, Int. J. Comput. Geom. Appl..
[25] Maarten Löffler,et al. Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition , 2014, J. Comput. Geom..
[26] Urs Ramer,et al. An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..
[27] David H. Douglas,et al. ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .
[28] Bin Jiang,et al. Probabilistic Skylines on Uncertain Data , 2007, VLDB.
[29] Maarten Löffler,et al. The directed Hausdorff distance between imprecise point sets , 2011, Theor. Comput. Sci..
[30] Kevin Buchin,et al. Detecting movement patterns using Brownian bridges , 2012, SIGSPATIAL/GIS.
[31] Maarten Löffler,et al. Fréchet Distance for Uncertain Curves , 2020, ICALP.
[32] Joachim Gudmundsson,et al. Compressing spatio-temporal trajectories , 2009, Comput. Geom..
[33] Pankaj K. Agarwal,et al. Efficient Algorithms for Approximating Polygonal Chains , 2000, Discret. Comput. Geom..
[34] W. S. Chan,et al. Approximation of Polygonal Curves with Minimum Number of Line Segments or Minimum error , 1996, Int. J. Comput. Geom. Appl..