Uncertain Curve Simplification

We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence of exact points, each uncertain point is represented by a region, which contains the (unknown) true location of the vertex. The regions we consider are disks, line segments, convex polygons, and discrete sets of points. We are interested in finding the shortest subsequence of uncertain points such that no matter what the true location of each uncertain point is, the resulting polygonal curve is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance. For both these distance measures, we present polynomial-time algorithms for this problem. 2012 ACM Subject Classification Theory of computation → Computational geometry

[1]  M. Buchin,et al.  Discrete Fréchet Distance for Uncertain Points , 2016 .

[2]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.

[3]  David G. Kirkpatrick,et al.  Competitive query strategies for minimising the ply of the potential locations of moving points , 2013, SoCG '13.

[4]  Pankaj K. Agarwal,et al.  Nearest-Neighbor Searching Under Uncertainty I , 2017, Discrete & Computational Geometry.

[5]  Hee-Kap Ahn,et al.  Computing the Discrete FRéChet Distance with Imprecise Input , 2010, Int. J. Comput. Geom. Appl..

[6]  Maarten Löffler,et al.  Flow Computations on Imprecise Terrains , 2011, WADS.

[7]  Kevin Buchin,et al.  Progressive Simplification of Polygonal Curves , 2020, Comput. Geom..

[8]  A. Melkman,et al.  On Polygonal Chain Approximation , 1988 .

[9]  Hiroshi Imai,et al.  Computational-geometric methods for polygonal approximations of a curve , 1986, Comput. Vis. Graph. Image Process..

[10]  Subhash Suri,et al.  On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.

[11]  Nabil H. Mustafa,et al.  Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.

[12]  Joseph S. B. Mitchell,et al.  Preprocessing Imprecise Points and Splitting Triangulations , 2010, SIAM J. Comput..

[13]  Michael T. Goodrich,et al.  Efficiently Approximating Polygonal Paths in Three and Higher Dimensions , 1998, SCG '98.

[14]  Maarten Löffler,et al.  Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.

[15]  Maarten Löffler,et al.  Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.

[16]  Maarten Löffler,et al.  Geometric Computations on Indecisive Points , 2011, WADS.

[17]  Maarten Löffler,et al.  Data Imprecision in Computational Geometry , 2009 .

[18]  Maarten Löffler,et al.  Shape Fitting on Point Sets with Probability Distributions , 2008, ESA.

[19]  Maarten Löffler,et al.  Removing local extrema from imprecise terrains , 2010, Comput. Geom..

[20]  Karl Bringmann,et al.  Polyline Simplification has Cubic Complexity , 2018, SoCG.

[21]  Kevin Buchin,et al.  Model-Based Segmentation and Classification of Trajectories , 2017, Algorithmica.

[22]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..

[23]  Maarten Löffler,et al.  Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.

[24]  Leizhen Cai,et al.  Computing Visibility Information in an Inaccurate Simple Polygon , 1997, Int. J. Comput. Geom. Appl..

[25]  Maarten Löffler,et al.  Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition , 2014, J. Comput. Geom..

[26]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[27]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[28]  Bin Jiang,et al.  Probabilistic Skylines on Uncertain Data , 2007, VLDB.

[29]  Maarten Löffler,et al.  The directed Hausdorff distance between imprecise point sets , 2011, Theor. Comput. Sci..

[30]  Kevin Buchin,et al.  Detecting movement patterns using Brownian bridges , 2012, SIGSPATIAL/GIS.

[31]  Maarten Löffler,et al.  Fréchet Distance for Uncertain Curves , 2020, ICALP.

[32]  Joachim Gudmundsson,et al.  Compressing spatio-temporal trajectories , 2009, Comput. Geom..

[33]  Pankaj K. Agarwal,et al.  Efficient Algorithms for Approximating Polygonal Chains , 2000, Discret. Comput. Geom..

[34]  W. S. Chan,et al.  Approximation of Polygonal Curves with Minimum Number of Line Segments or Minimum error , 1996, Int. J. Comput. Geom. Appl..