Evolutionary Computation Applied to the Automatic Design of Artificial Neural Networks and Associative Memories

In this paper we describe how evolutionary computation can be used to automatically design artificial neural networks (ANNs) and associative memories (AMs). In the case of ANNs, Particle Swarm Optimization (PSO), Differential Evolution (DE), and Artificial Bee Colony (ABC) algorithms are used, while Genetic Programming is adopted for AMs. The derived ANNs and AMs are tested with several examples of well-known databases.

[1]  N. Rashevsky The mathematical biophysics of some mental phenomena , 1945 .

[2]  Juan Humberto Sossa Azuela,et al.  Design of artificial neural networks using a modified Particle Swarm Optimization algorithm , 2009, 2009 International Joint Conference on Neural Networks.

[3]  Beatriz A. Garro,et al.  Training Spiking Neurons by Means of Particle Swarm Optimization , 2011, ICSI.

[4]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.

[5]  G. Isac Models and applications , 1992 .

[6]  R. Vázquez A computational approach for modeling the biological olfactory system during an odor discrimination task using spiking neuron , 2011, BMC Neuroscience.

[7]  Juan Humberto Sossa Azuela,et al.  Artificial neural network synthesis by means of artificial bee colony (ABC) algorithm , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[8]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[9]  John R. Koza,et al.  Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[10]  James A. Anderson,et al.  A simple neural network generating an interactive memory , 1972 .

[11]  Juan Humberto Sossa Azuela,et al.  Automatic Synthesis of Associative Memories through Genetic Programming: A First Co-evolutionary Approach , 2010, EvoApplications.

[12]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[13]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[14]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[15]  Roberto Antonio Vázquez Pattern Recognition Using Spiking Neurons and Firing Rates , 2010, IBERAMIA.

[16]  Guillermo Ricardo Simari,et al.  Advances in Artificial Intelligence – IBERAMIA 2010 , 2010, Lecture Notes in Computer Science.

[17]  Juan Humberto Sossa Azuela,et al.  Design of Artificial Neural Networks Using Differential Evolution Algorithm , 2010, ICONIP.

[18]  Raúl Rojas,et al.  The Backpropagation Algorithm , 1996 .

[19]  Peter Sussner,et al.  Morphological associative memories , 1998, IEEE Trans. Neural Networks.

[20]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[21]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[22]  Beatriz A. Garro,et al.  Back-Propagation vs Particle Swarm Optimization Algorithm: which Algorithm is better to adjust the Synaptic Weights of a Feed-Forward ANN? , 2011 .

[23]  Roberto Vazquez Izhikevich Neuron Model and its Application in Pattern Recognition , 2010, Aust. J. Intell. Inf. Process. Syst..

[24]  Juan Humberto Sossa Azuela,et al.  Evolving Neural Networks: A Comparison between Differential Evolution and Particle Swarm Optimization , 2011, ICSI.

[25]  Jack Belzer,et al.  Encyclopedia of Computer Science and Technology , 2002 .

[26]  Xin Yao,et al.  Evolutionary Artificial Neural Networks , 1993, Int. J. Neural Syst..

[27]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[28]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[29]  Juan Humberto Sossa Azuela,et al.  Evolutionary Associative Memories through Genetic Programming , 2011, Parallel Architectures and Bioinspired Algorithms.

[30]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[31]  Xin Yao,et al.  A review of evolutionary artificial neural networks , 1993, Int. J. Intell. Syst..

[32]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[33]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.