Regularity of discrete multisublinear fractional maximal functions

We investigate the regularity properties of discrete multisublinear fractional maximal operators, both in the centered and uncentered versions. We prove that these operators are bounded and continuous from ℓ1(ℤd) × ℓ1(ℤd) × · · · × ℓ1(ℤd) to BV(ℤd), where BV(ℤd) is the set of functions of bounded variation defined on ℤd. Moreover, two pointwise estimates for the partial derivatives of discrete multisublinear fractional maximal functions are also given. As applications, we present the regularity properties for discrete fractional maximal operator, which are new even in the linear case.

[1]  E. Saksman,et al.  Regularity of the Fractional Maximal Function , 2003 .

[2]  P. Lindqvist,et al.  THE DERIVATIVE OF THE MAXIMAL FUNCTION , 1998 .

[3]  L. Pierce Discrete Analogues in Harmonic Analysis , 2023, Graduate Studies in Mathematics.

[4]  Hitoshi Tanaka A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function , 2001, Bulletin of the Australian Mathematical Society.

[5]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[6]  Hannes Luiro Continuity of the maximal operator in sobolev spaces , 2006 .

[7]  Feng Liu,et al.  A NOTE ON THE ENDPOINT REGULARITY OF THE HARDY–LITTLEWOOD MAXIMAL FUNCTIONS , 2015, Bulletin of the Australian Mathematical Society.

[8]  Feng Liu,et al.  On the Regularity of the Multisublinear Maximal Functions , 2015, Canadian Mathematical Bulletin.

[9]  J. M. Aldaz,et al.  Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities , 2006, math/0601044.

[10]  E. Carneiro,et al.  Corrigendum to “On a discrete version of Tanaka’s theorem for maximal functions” , 2010, 1005.3030.

[11]  Ondvrej Kurka On the variation of the Hardy-Littlewood maximal function , 2012, 1210.0496.

[12]  K. Yabuta,et al.  Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution , 2016 .

[13]  Hannes Luiro On the regularity of the Hardy-Littlewood maximal operator on subdomains of ℝn , 2010, Proceedings of the Edinburgh Mathematical Society.

[14]  J. Onninen,et al.  ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES , 2004 .

[15]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[16]  Dachun Yang,et al.  Hardy spaces Hp over non-homogeneous metric measure spaces and their applications , 2014, 1412.0190.

[17]  Dachun Yang,et al.  Anisotropic Hardy-Lorentz spaces and their applications , 2015, 1512.05081.

[18]  E. Carneiro,et al.  Derivative bounds for fractional maximal functions , 2015, 1510.02965.

[19]  J. Kinnunen The hardy-littlewood maximal function of a sobolev function , 1997 .

[20]  E. Carneiro,et al.  On the regularity of maximal operators , 2008, 0809.4044.

[21]  W. Sickel,et al.  Interpolation of Morrey-Campanato and related smoothness spaces , 2014, 1406.0906.

[22]  Faruk Temur On regularity of the discrete Hardy-Littlewood maximal function , 2013, 1303.3993.

[23]  E. Carneiro,et al.  On the endpoint regularity of discrete maximal operators , 2013, 1309.1535.