SVsearcher: A more accurate structural variation detection method in long read data

[1]  W. Sung,et al.  Calling large indels in 1047 Arabidopsis with IndelEnsembler , 2021, Nucleic acids research.

[2]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[3]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[4]  Yadong Wang,et al.  Long-read-based human genomic structural variation detection with cuteSV , 2020, Genome Biology.

[5]  Ken Chen,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[6]  Sergey Koren,et al.  Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome , 2019, Nature Biotechnology.

[7]  Alexander Hoischen,et al.  Long-Read Sequencing Emerging in Medical Genetics , 2019, Front. Genet..

[8]  Wing-Kin Sung,et al.  SurVIndel: improving CNV calling from high-throughput sequencing data through statistical testing , 2019, Bioinform..

[9]  Martin Vingron,et al.  SVIM: structural variant identification using mapped long reads , 2018, bioRxiv.

[10]  Fritz J Sedlazeck,et al.  Piercing the dark matter: bioinformatics of long-range sequencing and mapping , 2018, Nature Reviews Genetics.

[11]  E. Liu,et al.  Picky Comprehensively Detects High Resolution Structural Variants in Nanopore Long Reads , 2018, Nature Methods.

[12]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[13]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[14]  F. Sedlazeck,et al.  Copy number increases of transposable elements and protein‐coding genes in an invasive fish of hybrid origin , 2017, Molecular ecology.

[15]  Edwin Cuppen,et al.  Mapping and phasing of structural variation in patient genomes using nanopore sequencing , 2017, Nature Communications.

[16]  Hugh E. Olsen,et al.  Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells , 2017, Nature Communications.

[17]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[18]  J. Korlach,et al.  De novo assembly and phasing of a Korean human genome , 2016, Nature.

[19]  Michael C. Schatz,et al.  Assemblytics: a web analytics tool for the detection of variants from an assembly , 2016, Bioinform..

[20]  Bauke Ylstra,et al.  Sequencing Structural Variants in Cancer for Precision Therapeutics. , 2016, Trends in genetics : TIG.

[21]  E. Eichler,et al.  Long-read sequencing and de novo assembly of a Chinese genome , 2016, Nature Communications.

[22]  Xin Li,et al.  The impact of structural variation on human gene expression , 2016, Nature Genetics.

[23]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[24]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[25]  Alexa B. R. McIntyre,et al.  Extensive sequencing of seven human genomes to characterize benchmark reference materials , 2015, Scientific Data.

[26]  J. Lupski Structural variation mutagenesis of the human genome: Impact on disease and evolution , 2015, Environmental and molecular mutagenesis.

[27]  Knut Reinert,et al.  Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone , 2014, Bioinform..

[28]  C. Thermes,et al.  Ten years of next-generation sequencing technology. , 2014, Trends in genetics : TIG.

[29]  W. Salerno,et al.  PBHoney: identifying genomic variants via long-read discordance and interrupted mapping , 2014, BMC Bioinformatics.

[30]  Arndt von Haeseler,et al.  NextGenMap: fast and accurate read mapping in highly polymorphic genomes , 2013, Bioinform..

[31]  Richard J. Roberts,et al.  The advantages of SMRT sequencing , 2013, Genome Biology.

[32]  Thomas Zichner,et al.  Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing , 2013, Genome research.

[33]  Jan O. Korbel,et al.  Phenotypic impact of genomic structural variation: insights from and for human disease , 2013, Nature Reviews Genetics.

[34]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[35]  V. Beneš,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[36]  Bradley P. Coe,et al.  Genome structural variation discovery and genotyping , 2011, Nature Reviews Genetics.

[37]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[38]  N. Siva 1000 Genomes project , 2008, Nature Biotechnology.

[39]  Vahid Farrahi,et al.  A Novel Time-aware Food recommender-system based on Deep Learning and Graph Clustering , 2022, IEEE Access.

[40]  D. Campion,et al.  APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy , 2006, Nature Genetics.