Laboratory thermal emission spectroscopy of shocked basalt from Lonar Crater, India, and implications for Mars orbital and sample data

Whereas the thermal infrared (TIR) spectra of specific minerals and/or igneous and metamorphic rocks have been compared to data of the Martian surface, TIR data of the impactite products of the shock metamorphism of basalt have not been examined in detail. The effects of shock on the thermal infrared spectrum of Deccan basalt are described here. Sample collection at Lonar Crater, India, yielded four classes of shocked basalt: classes 1, 2, 4, and 5. Spectral features attributed to labradorite in TIR spectrum of unshocked Deccan basalt are absent in the spectrum of class 2 shocked basalt. Petrography confirms that labradorite has been replaced by diaplectic glass (maskelynite). The TIR spectrum of class 2 shocked basalt is nearly identical to that of the Los Angeles shergottite. The addition of experimentally shocked plagioclase feldspars as TIR end‐members improves fits and lowers RMS errors for the deconvolution of the TIR spectrum of the maskelynite‐bearing impactite, and the correct mineralogy is chosen to within 5%. Class 4 shocked basalt contains vesiculated plagioclase glass (due to more heat) and highly fractured augites. Two class 5 spectral types have primary Si‐O stretching vibrations at lower wave numbers than Si and Si‐K glass end‐members commonly used in analyses of TIR data, agreeing with lower SiO2 abundances (∼50%) determined from two techniques. At least three differences in spectral features exist between the two class 5 spectral types that we attribute to incomplete melting in the class 5A samples based on comparison to the class 4 spectrum. These samples and their TIR spectra represent excellent analogs for Martian shocked basalt and new lithologic end‐members for use in spectral libraries used to analyze TIR data from Mars.

[1]  C. Koeberl,et al.  40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts , 2011 .

[2]  V. Hamilton,et al.  A search for basaltic-to-intermediate glasses on Mars: Assessing martian crustal mineralogy , 2010 .

[3]  M. Ramsey,et al.  Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy , 2010 .

[4]  M. Dyar,et al.  Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared , 2009 .

[5]  K. Dalby,et al.  Effect of SiO 2 , Total FeO, Fe 2+ /Fe 3+ and Alkalis in Glasses on Thermal Infrared Spectra , 2008 .

[6]  Jeffrey R. Johnson,et al.  Thermal infrared spectroscopy and modeling of experimentally shocked basalts , 2007 .

[7]  Jeremy D. Johnson Thermal Infrared Emissivity Spectra of Experimentally Shocked Andesine , 2007 .

[8]  M. Ramsey,et al.  Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses , 2007 .

[9]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[10]  B. Marsh,et al.  A case for short duration of Deccan Trap Eruption , 2006 .

[11]  J. Michalski,et al.  Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data , 2006 .

[12]  J. Bridges,et al.  The SNC meteorites: basaltic igneous processes on Mars , 2006, Journal of the Geological Society.

[13]  Jörg Fritz,et al.  Ejection of Martian meteorites , 2005 .

[14]  J. Johnson,et al.  Thermal infrared spectral deconvolution of experimentally shocked basaltic rocks using experimentally shocked plagioclase endmembers , 2005 .

[15]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[16]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[17]  R. Grieve,et al.  Observations at terrestrial impact structures: Their utility in constraining crater formation , 2004 .

[18]  A. Rubin,et al.  Los Angeles: A tale of two stones , 2004 .

[19]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[20]  Jeffrey R. Johnson,et al.  Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars , 2003 .

[21]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[22]  H. Newsom,et al.  Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars , 2003 .

[23]  H. McSween,et al.  Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.

[24]  J. Bandfield,et al.  Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.

[25]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[26]  Paul G. Lucey,et al.  Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .

[27]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[28]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[29]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[30]  P. Christensen,et al.  Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .

[31]  M. Wyatt Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy , 2001 .

[32]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[33]  R. Clayton,et al.  Los Angeles: The Most Differentiated Basaltic Martian Meteorite , 2000 .

[34]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[35]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .

[36]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[37]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[38]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[39]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[40]  H. McSween,et al.  Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .

[41]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[42]  M. Renard,et al.  Discovering research value in the Campo del Cielo, Argentina, meteorite craters , 1996 .

[43]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[44]  P. Christensen,et al.  Thermal infrared emission spectroscopy of natural surfaces : Application to desert varnish coatings on rocks. , 1993 .

[45]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[46]  J. Garvin,et al.  Characteristics of large terrestrial impact structures as revealed by remote sensing studies. , 1992 .

[47]  John W. Salisbury,et al.  Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .

[48]  R. Ostertag Shock experiments on feldspar crystals , 1983 .

[49]  F. Hörz,et al.  Bunte Breccia of the Ries: Continuous deposits of large impact craters , 1983 .

[50]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[51]  D. J. Milton,et al.  Morphology of Lonar Crater, India: Comparisons and implications , 1980 .

[52]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[53]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[54]  D. H. Scott Mars, highlands-lowlands: Viking contributions to mariner relative age studies , 1978 .

[55]  D. J. Milton,et al.  Lonar Lake, India: An Impact Crater in Basalt , 1973, Science.

[56]  D. Stoeffler Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I - Behavior of minerals under shock compression. , 1972 .

[57]  Susan Werner Kieffer,et al.  Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona , 1971 .

[58]  D. Stöffler Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters , 1971 .

[59]  D. J. Milton,et al.  Meteorites and Craters Campo del Cielo, Argentina. , 1965, Science.

[60]  R. Lyon Analysis of rocks by spectral infrared emission (8 to 25 microns) , 1965 .

[61]  S. Wright Intermediate (20-40 GPa) Shocked Basalt from Lonar Crater, India: Ejecta Locality and Spectroscopy of a Shergottite Analog , 2008 .

[62]  M. Spagnuolo,et al.  Explosion craters and penetration funnels in the Campo del Cielo, Argentina crater field , 2007 .

[63]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[64]  T. E. BuNcnr,et al.  NATURAL TERRESTRIAL MASKELYNITE , 2007 .

[65]  A. Ocampo,et al.  Revisiting the Campo Del Cielo, Argentina Crater Field: A New Data Point from a Natural Laboratory of Multiple Low Velocity, Oblique Impacts , 2006 .

[66]  J. W. B. Tseung,et al.  Field Observations of Ground-hugging Ejecta Flow at Lonar Crater, India , 2005 .

[67]  J. Mustard,et al.  Impact melts and glasses on Mars , 2004 .

[68]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[69]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[70]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[71]  F. Hoerz,et al.  Shock metamorphism of lunar and terrestrial basalts , 1977 .

[72]  D. J. Milton,et al.  Shocked basalt from Lonar Impact Crater, India, and experimental analogues , 1976 .

[73]  Eugene M. Shoemaker,et al.  Impact mechanics at Meteor Crater, Arizona , 1959 .