Laboratory thermal emission spectroscopy of shocked basalt from Lonar Crater, India, and implications for Mars orbital and sample data
暂无分享,去创建一个
[1] C. Koeberl,et al. 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts , 2011 .
[2] V. Hamilton,et al. A search for basaltic-to-intermediate glasses on Mars: Assessing martian crustal mineralogy , 2010 .
[3] M. Ramsey,et al. Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy , 2010 .
[4] M. Dyar,et al. Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared , 2009 .
[5] K. Dalby,et al. Effect of SiO 2 , Total FeO, Fe 2+ /Fe 3+ and Alkalis in Glasses on Thermal Infrared Spectra , 2008 .
[6] Jeffrey R. Johnson,et al. Thermal infrared spectroscopy and modeling of experimentally shocked basalts , 2007 .
[7] Jeremy D. Johnson. Thermal Infrared Emissivity Spectra of Experimentally Shocked Andesine , 2007 .
[8] M. Ramsey,et al. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses , 2007 .
[9] Jeffrey R. Johnson,et al. The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .
[10] B. Marsh,et al. A case for short duration of Deccan Trap Eruption , 2006 .
[11] J. Michalski,et al. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data , 2006 .
[12] J. Bridges,et al. The SNC meteorites: basaltic igneous processes on Mars , 2006, Journal of the Geological Society.
[13] Jörg Fritz,et al. Ejection of Martian meteorites , 2005 .
[14] J. Johnson,et al. Thermal infrared spectral deconvolution of experimentally shocked basaltic rocks using experimentally shocked plagioclase endmembers , 2005 .
[15] M. D. Smith,et al. Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.
[16] R. Rieder,et al. Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.
[17] R. Grieve,et al. Observations at terrestrial impact structures: Their utility in constraining crater formation , 2004 .
[18] A. Rubin,et al. Los Angeles: A tale of two stones , 2004 .
[19] Thomas G. Sharp,et al. Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .
[20] Jeffrey R. Johnson,et al. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars , 2003 .
[21] P. Christensen,et al. Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .
[22] H. Newsom,et al. Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars , 2003 .
[23] H. McSween,et al. Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.
[24] J. Bandfield,et al. Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.
[25] S. Ruff,et al. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .
[26] Paul G. Lucey,et al. Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .
[27] Joshua L. Bandfield,et al. Global mineral distributions on Mars , 2002 .
[28] Steven H. Silverman,et al. Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.
[29] Harry Y. McSween,et al. The rocks of Mars, from far and near , 2002 .
[30] P. Christensen,et al. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .
[31] M. Wyatt. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy , 2001 .
[32] O. Eugster,et al. Ages and Geologic Histories of Martian Meteorites , 2001 .
[33] R. Clayton,et al. Los Angeles: The Most Differentiated Basaltic Martian Meteorite , 2000 .
[34] D. A. Howard,et al. A thermal emission spectral library of rock-forming minerals , 2000 .
[35] P. Christensen,et al. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .
[36] R. Clark,et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .
[37] Joshua L. Bandfield,et al. A Global View of Martian Surface Compositions from MGS-TES , 2000 .
[38] P. Christensen,et al. Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .
[39] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[40] H. McSween,et al. Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .
[41] P. Christensen,et al. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .
[42] M. Renard,et al. Discovering research value in the Campo del Cielo, Argentina, meteorite craters , 1996 .
[43] Harry Y. McSween,et al. What we have learned about Mars from SNC meteorites , 1994 .
[44] P. Christensen,et al. Thermal infrared emission spectroscopy of natural surfaces : Application to desert varnish coatings on rocks. , 1993 .
[45] Stephane Erard,et al. The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .
[46] J. Garvin,et al. Characteristics of large terrestrial impact structures as revealed by remote sensing studies. , 1992 .
[47] John W. Salisbury,et al. Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .
[48] R. Ostertag. Shock experiments on feldspar crystals , 1983 .
[49] F. Hörz,et al. Bunte Breccia of the Ries: Continuous deposits of large impact craters , 1983 .
[50] R. Clark,et al. Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .
[51] D. J. Milton,et al. Morphology of Lonar Crater, India: Comparisons and implications , 1980 .
[52] H. Newsom. Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .
[53] Robert B. Singer,et al. Mars surface composition from reflectance spectroscopy: A summary , 1979 .
[54] D. H. Scott. Mars, highlands-lowlands: Viking contributions to mariner relative age studies , 1978 .
[55] D. J. Milton,et al. Lonar Lake, India: An Impact Crater in Basalt , 1973, Science.
[56] D. Stoeffler. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I - Behavior of minerals under shock compression. , 1972 .
[57] Susan Werner Kieffer,et al. Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona , 1971 .
[58] D. Stöffler. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters , 1971 .
[59] D. J. Milton,et al. Meteorites and Craters Campo del Cielo, Argentina. , 1965, Science.
[60] R. Lyon. Analysis of rocks by spectral infrared emission (8 to 25 microns) , 1965 .
[61] S. Wright. Intermediate (20-40 GPa) Shocked Basalt from Lonar Crater, India: Ejecta Locality and Spectroscopy of a Shergottite Analog , 2008 .
[62] M. Spagnuolo,et al. Explosion craters and penetration funnels in the Campo del Cielo, Argentina crater field , 2007 .
[63] Philip R. Christensen,et al. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .
[64] T. E. BuNcnr,et al. NATURAL TERRESTRIAL MASKELYNITE , 2007 .
[65] A. Ocampo,et al. Revisiting the Campo Del Cielo, Argentina Crater Field: A New Data Point from a Natural Laboratory of Multiple Low Velocity, Oblique Impacts , 2006 .
[66] J. W. B. Tseung,et al. Field Observations of Ground-hugging Ejecta Flow at Lonar Crater, India , 2005 .
[67] J. Mustard,et al. Impact melts and glasses on Mars , 2004 .
[68] Bevan M. French,et al. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .
[69] H. Melosh. Impact Cratering: A Geologic Process , 1986 .
[70] R. Singer,et al. Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .
[71] F. Hoerz,et al. Shock metamorphism of lunar and terrestrial basalts , 1977 .
[72] D. J. Milton,et al. Shocked basalt from Lonar Impact Crater, India, and experimental analogues , 1976 .
[73] Eugene M. Shoemaker,et al. Impact mechanics at Meteor Crater, Arizona , 1959 .