Responses of ground-dwelling birds and mammals to local environmental variables and human pressure in an Amazonian protected area

[1]  C. Peres,et al.  Physical geography trumps legal protection in driving the perceived sustainability of game hunting in Amazonian local communities , 2022, Journal for Nature Conservation.

[2]  P. M. Fearnside,et al.  Brazil’s Iguaçu National Park threatened by illegal activities: predicting consequences of proposed downgrading and road construction , 2022, Environmental Research Letters.

[3]  Clarissa Rosa,et al.  Species-rich but defaunated: the case of medium and large-bodied mammals in a sustainable use protected area in the Amazon , 2021, Acta Amazonica.

[4]  C. Peres,et al.  Hunting pressure modulates the composition and size structure of terrestrial and arboreal vertebrates in Amazonian forests , 2021, Biodiversity and Conservation.

[5]  Indrajeet Patil,et al.  performance: An R Package for Assessment, Comparison and Testing of Statistical Models , 2021, J. Open Source Softw..

[6]  L. Parry,et al.  Forest cover and social relations are more important than economic factors in driving hunting and bushmeat consumption in post-frontier Amazonia , 2021, Biological Conservation.

[7]  Clarissa Rosa,et al.  Long-term standardized ecological research in an Amazonian savanna: a laboratory under threat. , 2021, Anais da Academia Brasileira de Ciencias.

[8]  M. Silveira,et al.  The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. , 2021, Anais da Academia Brasileira de Ciencias.

[9]  M. Passamani,et al.  Seed removal of Araucaria angustifolia by native and invasive mammals in protected areas of Atlantic Forest , 2021 .

[10]  M. Galetti,et al.  Frugivory underpins the nitrogen cycle , 2020 .

[11]  F. Silla,et al.  Forest matters: Use of water reservoirs by mammal communities in cattle ranch landscapes in the Paraguayan Dry Chaco , 2020 .

[12]  H. Tuomisto,et al.  The relative role of rivers, environmental heterogeneity and species traits in driving compositional changes in southeastern Amazonian bird assemblages , 2020, Biotropica.

[13]  Myriam E. Mermoz,et al.  Ground nesting birds in roadside borders of the Argentine Pampas: habitat use and predation risk of artificial nests , 2019, Revista Brasileira de Ornitologia.

[14]  M. Passamani,et al.  Factors affecting space use by wild boars (Sus scrofa) in high-elevation tropical forests , 2019, Canadian Journal of Zoology.

[15]  P. Jordano,et al.  The cryptic regulation of diversity by functionally complementary large tropical forest herbivores , 2019, Journal of Ecology.

[16]  A. Antunes,et al.  Igapó seed patches: a potentially key resource for terrestrial vertebrates in a seasonally flooded forest of central Amazonia , 2019, Biological Journal of the Linnean Society.

[17]  D. Macdonald,et al.  Habitat use of the ocelot (Leopardus pardalis) in Brazilian Amazon , 2019, Ecology and evolution.

[18]  S. Aragón,et al.  Prey abundance drives habitat occupancy by jaguars in Amazonian floodplain river islands , 2019, bioRxiv.

[19]  A. Swanson,et al.  Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys , 2018, African Journal of Ecology.

[20]  W. Magnusson,et al.  Subtle changes in elevation shift bat‐assemblage structure in Central Amazonia , 2018 .

[21]  R. Barnett,et al.  The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon , 2018, Nature Plants.

[22]  Jefferson Ferreira-Ferreira,et al.  Spatial patterns of medium and large size mammal assemblages in várzea and terra firme forests, Central Amazonia, Brazil , 2018, PloS one.

[23]  Daniele Silvestro,et al.  Amazonia is the primary source of Neotropical biodiversity , 2018, Proceedings of the National Academy of Sciences.

[24]  M. Galetti,et al.  Forest fragmentation and selective logging affect the seed survival and recruitment of a relictual conifer , 2018 .

[25]  E. McDonald‐Madden,et al.  The contribution of predators and scavengers to human well-being , 2018, Nature Ecology & Evolution.

[26]  Tavis D. Forrester,et al.  Do occupancy or detection rates from camera traps reflect deer density? , 2017, Journal of Mammalogy.

[27]  J. Barlow,et al.  Landscape correlates of bushmeat consumption and hunting in a post-frontier Amazonian region , 2017, Environmental Conservation.

[28]  Kevin R Crooks,et al.  Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals , 2017, Proceedings of the National Academy of Sciences.

[29]  R. Bovendorp,et al.  Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant , 2017 .

[30]  Euan G Ritchie,et al.  Top predators constrain mesopredator distributions , 2017, Nature Communications.

[31]  Yinhai Wang,et al.  Google Earth elevation data extraction and accuracy assessment for transportation applications , 2017, PloS one.

[32]  M A J Huijbregts,et al.  The impact of hunting on tropical mammal and bird populations , 2017, Science.

[33]  D. Norris,et al.  Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest , 2017, PloS one.

[34]  Stevan Z. Knezevic,et al.  Invasive Plant Species , 2017 .

[35]  C. Peres,et al.  Empty forest or empty rivers? A century of commercial hunting in Amazonia , 2016, Science Advances.

[36]  E. Mendoza,et al.  Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species , 2016 .

[37]  C. Chapman,et al.  What Ecological and Anthropogenic Factors Affect Group Size in White‐lipped Peccaries (Tayassu pecari)? , 2016 .

[38]  T. Oliveira,et al.  Home range and density of three sympatric felids in the Southern Atlantic Forest, Brazil. , 2016, Brazilian journal of biology = Revista brasleira de biologia.

[39]  O. Ovaskainen,et al.  Defaunation affects carbon storage in tropical forests , 2015, Science Advances.

[40]  R. Solar,et al.  Aggregation of Cricket Activity in Response to Resource Addition Increases Local Diversity , 2015, PloS one.

[41]  Zhisong Yang,et al.  Comparison of microhabitat selection and trace abundance of giant pandas between primary and secondary forests in Liziping Nature Reserve, China: Effects of selective logging , 2015 .

[42]  D. Norris,et al.  Ecological Relationships of Meso-Scale Distribution in 25 Neotropical Vertebrate Species , 2015, PloS one.

[43]  R. Silveira,et al.  The role of forest structure and human occupation in structuring mammal assemblages in oligotrophic ecosystems of Central Amazonia , 2015 .

[44]  M. Galetti,et al.  Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests , 2015 .

[45]  J. Brodie,et al.  Differential responses of large mammals to logging and edge effects , 2015 .

[46]  A. Paviolo,et al.  Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest , 2014 .

[47]  C. Peres,et al.  Fruit–frugivore interactions in Amazonian seasonally flooded and unflooded forests , 2014, Journal of Tropical Ecology.

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  Jorge A. Ahumada,et al.  TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests , 2014 .

[50]  R. Gallagher Seeds: the ecology of regeneration in plant communities. , 2014 .

[51]  Jorge A. Ahumada,et al.  Monitoring the Status and Trends of Tropical Forest Terrestrial Vertebrate Communities from Camera Trap Data: A Tool for Conservation , 2013, PloS one.

[52]  Eric F. Lambin,et al.  The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon , 2013 .

[53]  M. Galetti,et al.  Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot , 2013 .

[54]  M. Pires,et al.  Large vertebrates as the missing components of seed-dispersal networks , 2013 .

[55]  G. Colli,et al.  Microhabitat Variation Explains Local‐scale Distribution of Terrestrial Amazonian Lizards in Rondônia, Western Brazil , 2013 .

[56]  Andreas Wilting,et al.  Risky business or simple solution – Relative abundance indices from camera-trapping , 2013 .

[57]  D. P. Drucker,et al.  Biodiversidade e Monitoramento Ambiental Integrado: o sistema RAPELD na Amazônia , 2013 .

[58]  V. Landeiro,et al.  Role of environmental and spatial processes in structuring anuran communities across a tropical rain forest , 2012 .

[59]  J. Whitaker,et al.  Food of the Armadillo Dasypus novemcinctus L. from Cumberland Island, GA , 2012 .

[60]  I. Gordon,et al.  Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north‐eastern Australian tropical savannas , 2012 .

[61]  A. Bager,et al.  Seasonality and habitat types affect roadkill of neotropical birds. , 2012, Journal of environmental management.

[62]  Denise Schaan,et al.  Precolumbian land use and settlement pattern in the Santarém region, lower Amazon , 2012 .

[63]  Erlend B. Nilsen,et al.  Habitat heterogeneity and mammalian predator–prey interactions , 2012 .

[64]  R. Nasi,et al.  Empty Forests, Empty Stomachs? Bushmeat and Livelihoods in the Congo and Amazon Basins , 2011 .

[65]  J. Ahumada,et al.  Community structure and diversity of tropical forest mammals: data from a global camera trap network , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[66]  J. A. Horn,et al.  Home Range, Habitat Use, and Activity Patterns of Free-Roaming Domestic Cats , 2011 .

[67]  N. Cáceres Biological characteristics influence mammal road kill in an Atlantic Forest–Cerrado interface in south-western Brazil , 2011 .

[68]  A. Veríssimo Áreas protegidas na Amazônia Brasileira - avanços e desafios , 2011 .

[69]  John L. Orrock,et al.  Invasive plant species alters consumer behavior by providing refuge from predation , 2011, Oecologia.

[70]  P. Jordano,et al.  Seed dispersal effectiveness revisited: a conceptual review. , 2010, The New phytologist.

[71]  J. Barlow,et al.  Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests , 2010, PloS one.

[72]  S. Vieira,et al.  Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil) , 2010 .

[73]  C. Peres,et al.  Long-term persistence of midsized to large-bodied mammals in Amazonian landscapes under varying contexts of forest cover , 2010, Biodiversity and Conservation.

[74]  C. Peres,et al.  Seed dispersal of the Brazil nut tree (Bertholletia excelsa) by scatter-hoarding rodents in a central Amazonian forest , 2010, Journal of Tropical Ecology.

[75]  William E. Magnusson,et al.  The Need for Large-Scale, Integrated Studies of Biodiversity ? the Experience of the Program for Biodiversity Research in Brazilian Amazonia , 2010 .

[76]  Francesco Rovero,et al.  Camera trapping photographic rate as an index of density in forest ungulates , 2009 .

[77]  C. Peres,et al.  Priority areas for the conservation of Atlantic forest large mammals , 2009 .

[78]  N. Cáceres,et al.  Habitat selection by large mammals in a southern Brazilian Atlantic Forest , 2009 .

[79]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[80]  S. Santos,et al.  Niche Partitioning Among White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs (Sus Scrofa) , 2009 .

[81]  Bruce D. Patterson,et al.  The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge , 2008, Science.

[82]  M. Kelly,et al.  Ocelot home range, overlap and density: comparing radio telemetry with camera trapping , 2008 .

[83]  P. Jordano,et al.  Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates , 2008 .

[84]  C. Peres,et al.  Vertebrate responses to fruit production in Amazonian flooded and unflooded forests , 2007, Biodiversity and Conservation.

[85]  José Alexandre Felizola Diniz-Filho,et al.  Climate, Niche Conservatism, and the Global Bird Diversity Gradient , 2007, The American Naturalist.

[86]  C. Peres,et al.  Basin‐Wide Effects of Game Harvest on Vertebrate Population Densities in Amazonian Forests: Implications for Animal‐Mediated Seed Dispersal , 2007 .

[87]  P. Fearnside Brazil’s Cuiabá- Santarém (BR-163) Highway: The Environmental Cost of Paving a Soybean Corridor Through the Amazon , 2007, Environmental management.

[88]  Teresa Cristina da Silveira,et al.  Food Habits of Four Armadillo Species in the Cerrado Area, Mato Grosso, Brazil , 2007 .

[89]  C. Alho,et al.  Response of wild mammals to seasonal shrinking-and-expansion of habitats due to flooding regime of the Pantanal, Brazil. , 2006, Brazilian journal of biology = Revista brasleira de biologia.

[90]  B. Beisiegel,et al.  Habitat use, home range and foraging preferences of the coati Nasua nasua in a pluvial tropical Atlantic forest area , 2006 .

[91]  M. V. Price,et al.  The need for large-scale, integrated studies of biodiversity - experiences in Brazilian Amazonia. , 2006 .

[92]  G. A. D. da Fonseca,et al.  The Fate of the Amazonian Areas of Endemism , 2005 .

[93]  F. Luizão,et al.  RAPELD: A MODIFICATION OF THE GENTRY METHOD FOR BIODIVERSITY SURVEYS IN LONG-TERM ECOLOGICAL RESEARCH SITES. , 2005 .

[94]  J. Barlow,et al.  Effects of Single and Recurrent Wildfires on Fruit Production and Large Vertebrate Abundance in a Central Amazonian Forest , 2006, Biodiversity & Conservation.

[95]  D. Eaton,et al.  Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment , 2004 .

[96]  G. Anderson,et al.  Habitat use by ocelots in south Texas: implications for restoration , 2004 .

[97]  G. Dubost,et al.  Comparative diet of the two forest cervids of the genus Mazama in French Guiana , 2004, Journal of Tropical Ecology.

[98]  C. Peres,et al.  Bringing home the biggest bacon: a cross-site analysis of the structure of hunter-kill profiles in Neotropical forests , 2003 .

[99]  Iain R. Lake,et al.  Extent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon Basin , 2003 .

[100]  J. Fragoso,et al.  Red‐rumped Agouti (Dasyprocta leporina) Home Range Use in an Amazonian Forest: Implications for the Aggregated Distribution of Forest Trees , 2003 .

[101]  Margaret F. Kinnaird,et al.  Deforestation Trends in a Tropical Landscape and Implications for Endangered Large Mammals , 2003 .

[102]  E. Wang Diets of Ocelots (Leopardus pardalis), Margays (L. wiedii), and Oncillas (L. tigrinus) in the Atlantic Rainforest in Southeast Brazil , 2002 .

[103]  C. Vaughan,et al.  Home Range, Habitat Use, and Activity of Baird's Tapir in Costa Rica1 , 2002 .

[104]  K. Silvius Spatio-temporal patterns of palm endocarp use by three Amazonian forest mammals: granivory or ‘grubivory’? , 2002, Journal of Tropical Ecology.

[105]  A. Estrada,et al.  Predation of artificial nests in a fragmented landscape in the tropical region of Los Tuxtlas, Mexico , 2002 .

[106]  C. Peres,et al.  Primate frugivory in two species-rich neotropical forests: implications for the demography of large-seeded plants in overhunted areas. , 2002 .

[107]  D. S. Hammond,et al.  Short-term effects of canopy openness on insect herbivores in a rain forest in Guyana , 2001 .

[108]  M. Pizo,et al.  The Use of Fruits and Seeds by Ants in the Atlantic Forest of Southeast Brazil1 , 2000 .

[109]  M. Pizo,et al.  The Use of Fruits and Seeds by Ants in the Atlantic Forest of Southeast Brazil 1 , 2000 .

[110]  P. Jordano Fruits and Frugivory , 2000 .

[111]  O. V. Helversen,et al.  Home Range, Population Density, and Food Resources of Agouti paca (Rodentia: Agoutidae) in Costa Rica: A Study Using Alternative Methods 1 , 1999 .

[112]  T. Fuller,et al.  Diet of the lowland tapir (Tapirus terrestris L.) in the Tabaro River valley, southern Venezuela , 1996 .

[113]  D. A. Elrod,et al.  Seasonal Diets of the Nine-banded Armadillo (Dasypus novemcinctus) in a Northern Part of Its Range , 1990 .

[114]  D. Levey Tropical wet forest treefall gaps and distributions of understory birds and plants , 1988 .