Peptide‐Mimicking Poly(2‐oxazoline)s Displaying Potent Antimicrobial Properties

Poly(2‐oxazoline)s have excellent biocompatibility and have been used as FDA‐approved indirect food additives. The inert property of the hydrophilic poly(2‐oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti‐biofouling agents. It was recently reported that poly(2‐oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2‐oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin‐resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2‐oxazoline)s as a class of novel antimicrobial agents in dealing with drug‐resistant microbial infections and antimicrobial resistance.

[1]  Runhui Liu,et al.  Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s , 2020 .

[2]  Runhui Liu,et al.  Poly(2-Oxazoline) Based Functional Mimics of Peptides to Eradicate MRSA Infections and Persisters While Alleviating Antimicrobial Resistance. , 2020, Angewandte Chemie.

[3]  Runhui Liu,et al.  Water Insensitive Synthesis of Poly-β-Peptides with Defined Architecture. , 2020, Angewandte Chemie.

[4]  J. Tiller,et al.  Telechelic biocidal poly(2-oxazoline)s and polycations , 2019, European Polymer Journal.

[5]  Runhui Liu,et al.  Host defense peptide mimicking poly-β-peptides with fast, potent and broad spectrum antibacterial activities. , 2019, Biomaterials science.

[6]  Runhui Liu,et al.  Lithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides , 2018, Nature Communications.

[7]  Zhuxian Zhou,et al.  A pH-responsive fragrance release system based on pseudopeptide polymeric micelles , 2018, Reactive and Functional Polymers.

[8]  Tim R. Dargaville,et al.  Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. , 2018, Macromolecular bioscience.

[9]  R. Hoogenboom,et al.  The chemistry of poly(2-oxazoline)s ☆ , 2017 .

[10]  Peng Sang,et al.  γ-AApeptides: Design, Structure, and Applications. , 2016, Accounts of chemical research.

[11]  R. Laxminarayan,et al.  Access to effective antimicrobials: a worldwide challenge , 2016, The Lancet.

[12]  Richard Hoogenboom,et al.  Tuning the LCST of poly(2‐cyclopropyl‐2‐oxazoline) via gradient copolymerization with 2‐ethyl‐2‐oxazoline , 2014 .

[13]  A. Katritzky,et al.  Peptidomimetics via modifications of amino acids and peptide bonds. , 2014, Chemical Society reviews.

[14]  J. Tiller,et al.  Biologisch schaltbare antimikrobielle Poly(2‐methyloxazoline) auf Grundlage des Satellitengruppeneffekts , 2014 .

[15]  A. Sickmann,et al.  Antimicrobial poly(2-methyloxazoline)s with bioswitchable activity through satellite group modification. , 2014, Angewandte Chemie.

[16]  H. Goossens,et al.  Antibiotic resistance—the need for global solutions , 2013, BDJ.

[17]  Rongsheng E. Wang,et al.  Recent development of small antimicrobial peptidomimetics. , 2012, Future medicinal chemistry.

[18]  U. Schubert,et al.  Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. , 2012, Macromolecular bioscience.

[19]  Renzo M. Paulus,et al.  Thermoresponsive poly(2-oxazine)s. , 2012, Macromolecular rapid communications.

[20]  Remy Chait,et al.  What counters antibiotic resistance in nature? , 2011, Nature chemical biology.

[21]  U. Schubert,et al.  Multifunctional Poly(2-oxazoline) Nanoparticles for Biological Applications. , 2010, Macromolecular rapid communications.

[22]  Richard Hoogenboom Poly(2‐oxazoline): eine Polymerklasse mit vielfältigen Anwendungsmöglichkeiten , 2009 .

[23]  Richard Hoogenboom,et al.  Poly(2-oxazoline)s: a polymer class with numerous potential applications. , 2009, Angewandte Chemie.

[24]  S. Gellman,et al.  Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. , 2009, Journal of the American Chemical Society.

[25]  W. DeGrado,et al.  De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers , 2009, Proceedings of the National Academy of Sciences.

[26]  R. Schubert,et al.  Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. , 2008, Biomacromolecules.

[27]  A. Barron,et al.  Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides , 2008, Proceedings of the National Academy of Sciences.

[28]  F. Veronese,et al.  Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates? , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[29]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[30]  J. Tiller,et al.  Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. , 2005, Macromolecular bioscience.

[31]  J. Tiller,et al.  Poly(oxazoline)s with telechelic antimicrobial functions. , 2005, Biomacromolecules.

[32]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[33]  M. Litt,et al.  Polymerization of cyclic imino ethers. I. Oxazolines , 1967 .

[34]  W. Seeliger,et al.  Neuere Synthesen und Reaktionen cyclischer Imidsäureester , 1966 .

[35]  W. Seeliger,et al.  Recent syntheses and reactions of cyclic imidic esters. , 1966, Angewandte Chemie.

[36]  D. P. Sheetz,et al.  Homopolymerization of 2‐alkyl‐ and 2‐aryl‐2‐oxazolines , 1966 .

[37]  K. Fukui,et al.  Ring‐opening polymerization of 2‐substituted 2‐oxazolines , 1966 .