Non-radiative recombination at dislocations in InAs quantum dots grown on silicon
暂无分享,去创建一个
John E. Bowers | Justin Norman | Michael E. Salmon | Robert Herrick | Jennifer Selvidge | Kunal Mukherjee | J. Bowers | K. Mukherjee | J. Norman | Jennifer Selvidge | R. Herrick | E. Hughes | M. Salmon | Eamonn T. Hughes
[1] J. W. Matthews,et al. Accommodation of Misfit Across the Interface Between Crystals of Semiconducting Elements or Compounds , 1970 .
[2] P. Petroff,et al. Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers , 1974 .
[3] John E. Bowers,et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .
[4] Wei Li,et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.
[5] Thierry Baron,et al. Origin of Defect Tolerance in InAs/GaAs Quantum Dot Lasers Grown on Silicon , 2020, Journal of Lightwave Technology.
[6] John E. Bowers,et al. Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.
[7] D. Bimberg,et al. Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .
[8] P. Smowton,et al. Femtosecond pulse generation in passively mode locked InAs quantum dot lasers , 2013 .
[9] K. Rammohan,et al. Influence of misfit dislocations on thermal quenching of luminescence in InxGa1−xAs/GaAs multiple quantum wells , 1995 .
[10] Peter Michael Smowton,et al. The measured dependence of the lateral ambipolar diffusion length on carrier injection-level in Stranski-Krastanov quantum dot devices , 2010 .
[11] John E. Bowers,et al. Quantum dot lasers for silicon photonics [Invited] , 2015 .
[12] Gaudenzio Meneghesso,et al. Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers , 2019, IEEE Journal of Quantum Electronics.
[13] John E. Bowers,et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001) , 2017 .
[14] Richard A. Hogg,et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .
[15] R. Dupuis,et al. Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates , 1987 .
[16] Brian B. Haidet,et al. Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon , 2018, Physical Review Materials.
[17] P. Smowton,et al. Fermi-dirac and random carrier distributions in quantum dot lasers , 2014 .
[18] M. Umeno,et al. Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .
[19] John Bowers,et al. Photonic Integration With Epitaxial III–V on Silicon , 2018, IEEE Journal of Selected Topics in Quantum Electronics.
[20] Larry A. Coldren,et al. Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum‐well ridge‐waveguide lasers , 1994 .
[21] Harry L. T. Lee,et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .
[22] Alwyn Seeds,et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.
[23] Richard Beanland,et al. Dislocation filters in GaAs on Si , 2015 .
[24] Di Liang,et al. Recent progress in lasers on silicon , 2010 .
[25] R. Beanland,et al. Plastic relaxation and relaxed buffer layers for semiconductor epitaxy , 1996 .
[26] Yoshio Itoh,et al. Defect reduction effects in GaAs on Si substrates by thermal annealing , 1988 .
[27] Y. Arakawa,et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). , 2018, Optics express.
[28] Di Liang,et al. Reliability of Hybrid Silicon Distributed Feedback Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.
[29] Hisashi Shichijo,et al. Room‐temperature continuous operation of p‐n AlxGa1−xAs‐GaAs quantum well heterostructure lasers grown on Si , 1987 .
[30] S. Takeuchi,et al. Radiation Enhanced Dislocation Glide and Rapid Degradation , 1990 .
[31] Mohamed Henini,et al. Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .
[32] L. Coldren,et al. Lateral carrier confinement in miniature lasers using quantum dots , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[33] J. Bowers,et al. Recent Advances in InAs Quantum Dot Lasers Grown on On‐Axis (001) Silicon by Molecular Beam Epitaxy , 2018, physica status solidi (a).
[34] B. W. Dodson. Dislocation filtering: why it works, when it doesn’t , 1990 .
[35] J. Farvacque,et al. Cathodoluminescence evidence of the relative position of As(g) and Ga(g) dislocation-related energy bands in gallium arsenide , 1993 .
[36] Andreas Stintz,et al. Carrier migration in structures with InAs quantum dots , 2003 .
[37] U. Woggon,et al. Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: The role of Coulomb attraction and dimensionality , 2015 .
[38] John E. Bowers,et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .
[39] Nikolai N. Ledentsov,et al. Electronic structure and energy relaxation in strained InAs/GaAs quantum pyramids , 1996 .
[40] David T. D. Childs,et al. Structural analysis of life tested 1.3 μm quantum dot lasers , 2008 .
[41] E. Yakimov. What is the real value of diffusion length in GaN , 2015 .
[42] J. A. Lebens,et al. Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence , 1989 .
[43] P. Smowton,et al. Random Population of Quantum Dots in InAs–GaAs Laser Structures , 2010, IEEE Journal of Quantum Electronics.
[44] Andrea Fiore,et al. Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots , 2004 .