Non-radiative recombination at dislocations in InAs quantum dots grown on silicon

We study the impact of misfit dislocations on the luminescence from InAs quantum dots (QDs) grown on Si substrates. Electron channeling contrast imaging is used together with cathodoluminescence mapping to locate misfit dislocations and characterize the resulting nonradiative recombination of carriers via near-infrared light emission profiles. With a 5 kV electron beam probe, the dark line defect width due to a typical misfit dislocation in a shallow QD active layer is found to be approximately 1 μm, with a 40%–50% peak emission intensity loss at room temperature. Importantly, we find that at cryogenic temperatures, the dislocations affect the QD ground state and the first excited state emission significantly less than the second excited state emission. At the same time, the dark line defect width, which partially relates to carrier diffusion in the system, is relatively constant across the temperature range of 10 K–300 K. Our results suggest that carrier dynamics in the QD wetting layer control emission intensity loss at dislocations, and that these defects reduce luminescence only at those temperatures where the probability of carriers thermalizing from the dots into the wetting layer becomes significant. We discuss the implications of these findings toward growing dislocation-tolerant, reliable quantum dot lasers on silicon.

[1]  J. W. Matthews,et al.  Accommodation of Misfit Across the Interface Between Crystals of Semiconducting Elements or Compounds , 1970 .

[2]  P. Petroff,et al.  Rapid degradation phenomenon in heterojunction GaAlAs-GaAs lasers , 1974 .

[3]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[4]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[5]  Thierry Baron,et al.  Origin of Defect Tolerance in InAs/GaAs Quantum Dot Lasers Grown on Silicon , 2020, Journal of Lightwave Technology.

[6]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[8]  P. Smowton,et al.  Femtosecond pulse generation in passively mode locked InAs quantum dot lasers , 2013 .

[9]  K. Rammohan,et al.  Influence of misfit dislocations on thermal quenching of luminescence in InxGa1−xAs/GaAs multiple quantum wells , 1995 .

[10]  Peter Michael Smowton,et al.  The measured dependence of the lateral ambipolar diffusion length on carrier injection-level in Stranski-Krastanov quantum dot devices , 2010 .

[11]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[12]  Gaudenzio Meneghesso,et al.  Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers , 2019, IEEE Journal of Quantum Electronics.

[13]  John E. Bowers,et al.  Low threading dislocation density GaAs growth on on-axis GaP/Si (001) , 2017 .

[14]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[15]  R. Dupuis,et al.  Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates , 1987 .

[16]  Brian B. Haidet,et al.  Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon , 2018, Physical Review Materials.

[17]  P. Smowton,et al.  Fermi-dirac and random carrier distributions in quantum dot lasers , 2014 .

[18]  M. Umeno,et al.  Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .

[19]  John Bowers,et al.  Photonic Integration With Epitaxial III–V on Silicon , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Larry A. Coldren,et al.  Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum‐well ridge‐waveguide lasers , 1994 .

[21]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[22]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[23]  Richard Beanland,et al.  Dislocation filters in GaAs on Si , 2015 .

[24]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[25]  R. Beanland,et al.  Plastic relaxation and relaxed buffer layers for semiconductor epitaxy , 1996 .

[26]  Yoshio Itoh,et al.  Defect reduction effects in GaAs on Si substrates by thermal annealing , 1988 .

[27]  Y. Arakawa,et al.  All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). , 2018, Optics express.

[28]  Di Liang,et al.  Reliability of Hybrid Silicon Distributed Feedback Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Hisashi Shichijo,et al.  Room‐temperature continuous operation of p‐n AlxGa1−xAs‐GaAs quantum well heterostructure lasers grown on Si , 1987 .

[30]  S. Takeuchi,et al.  Radiation Enhanced Dislocation Glide and Rapid Degradation , 1990 .

[31]  Mohamed Henini,et al.  Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .

[32]  L. Coldren,et al.  Lateral carrier confinement in miniature lasers using quantum dots , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  J. Bowers,et al.  Recent Advances in InAs Quantum Dot Lasers Grown on On‐Axis (001) Silicon by Molecular Beam Epitaxy , 2018, physica status solidi (a).

[34]  B. W. Dodson Dislocation filtering: why it works, when it doesn’t , 1990 .

[35]  J. Farvacque,et al.  Cathodoluminescence evidence of the relative position of As(g) and Ga(g) dislocation-related energy bands in gallium arsenide , 1993 .

[36]  Andreas Stintz,et al.  Carrier migration in structures with InAs quantum dots , 2003 .

[37]  U. Woggon,et al.  Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: The role of Coulomb attraction and dimensionality , 2015 .

[38]  John E. Bowers,et al.  Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .

[39]  Nikolai N. Ledentsov,et al.  Electronic structure and energy relaxation in strained InAs/GaAs quantum pyramids , 1996 .

[40]  David T. D. Childs,et al.  Structural analysis of life tested 1.3 μm quantum dot lasers , 2008 .

[41]  E. Yakimov What is the real value of diffusion length in GaN , 2015 .

[42]  J. A. Lebens,et al.  Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence , 1989 .

[43]  P. Smowton,et al.  Random Population of Quantum Dots in InAs–GaAs Laser Structures , 2010, IEEE Journal of Quantum Electronics.

[44]  Andrea Fiore,et al.  Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots , 2004 .