Spatial and proteomic profiling reveals centrosome‐independent features of centriolar satellites

Centriolar satellites are small electron‐dense granules that cluster in the vicinity of centrosomes. Satellites have been implicated in multiple critical cellular functions including centriole duplication, centrosome maturation, and ciliogenesis, but their precise composition and assembly properties have remained poorly explored. Here, we perform in vivo proximity‐dependent biotin identification (BioID) on 22 human satellite proteins, to identify 2,113 high‐confidence interactions among 660 unique polypeptides. Mining this network, we validate six additional satellite components. Analysis of the satellite interactome, combined with subdiffraction imaging, reveals the existence of multiple unique microscopically resolvable satellite populations that display distinct protein interaction profiles. We further show that loss of satellites in PCM1‐depleted cells results in a dramatic change in the satellite interaction landscape. Finally, we demonstrate that satellite composition is largely unaffected by centriole depletion or disruption of microtubules, indicating that satellite assembly is centrosome‐independent. Together, our work offers the first systematic spatial and proteomic profiling of human centriolar satellites and paves the way for future studies aimed at better understanding the biogenesis and function(s) of these enigmatic structures.

[1]  I. Kavakli,et al.  Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation , 2019, EMBO reports.

[2]  Lucas Pelkmans,et al.  Kinase-controlled phase transition of membraneless organelles in mitosis , 2018, Nature.

[3]  Martin A. M. Reijns,et al.  CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions , 2018, Nature.

[4]  Christopher M Johnson,et al.  Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly , 2018, Nature Communications.

[5]  Anne-Claude Gingras,et al.  High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. , 2018, Molecular cell.

[6]  Joseph T. Roland,et al.  The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins , 2017, The Journal of Biological Chemistry.

[7]  B. Dynlacht,et al.  Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy , 2017, Current Biology.

[8]  Hyungwon Choi,et al.  ProHits-viz: a suite of web tools for visualizing interaction proteomics data , 2017, Nature Methods.

[9]  A. Gingras,et al.  CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme , 2017, Open Biology.

[10]  J. Yates,et al.  The centriolar satellite protein CCDC66 interacts with CEP290 and functions in cilium formation and trafficking , 2017, Journal of Cell Science.

[11]  Jianmin Zhang,et al.  Loss of DLG5 promotes breast cancer malignancy by inhibiting the Hippo signaling pathway , 2017, Scientific Reports.

[12]  B. Raught,et al.  VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis , 2017, The Journal of cell biology.

[13]  A. Emili,et al.  DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2 , 2016, Genes & development.

[14]  M. Sarkisian,et al.  PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide1 , 2016, Translational oncology.

[15]  T. Toda,et al.  Regulation of centriolar satellite integrity and its physiology , 2016, Cellular and Molecular Life Sciences.

[16]  J. Stender,et al.  53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration , 2016, The Journal of cell biology.

[17]  Cheol‐Hee Kim,et al.  MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment , 2016, Scientific Reports.

[18]  Jason M. Brown,et al.  Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin , 2016, Journal of Cell Science.

[19]  B. Dynlacht,et al.  Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis , 2016, eLife.

[20]  A. Gautreau,et al.  Actin nucleation at the centrosome controls lymphocyte polarity , 2016, Nature Communications.

[21]  S. Rozen,et al.  MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex , 2016, eLife.

[22]  J. Yates,et al.  Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left–right asymmetry , 2016, Molecular biology of the cell.

[23]  L. Blanchoin,et al.  The centrosome is an actin-organizing center , 2015, Nature Cell Biology.

[24]  Brian Raught,et al.  A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface , 2015, Cell.

[25]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[26]  R. Vale,et al.  Microtubule nucleation at the centrosome and beyond , 2015, Nature Cell Biology.

[27]  J. Peters,et al.  The Deubiquitinase USP37 Regulates Chromosome Cohesion and Mitotic Progression , 2015, Current Biology.

[28]  C. Walsh,et al.  Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication , 2015, eLife.

[29]  Ashley V. Kroll,et al.  Reversible centriole depletion with an inhibitor of Polo-like kinase 4 , 2015, Science.

[30]  I. Katayama,et al.  GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses , 2015, Cell Death and Disease.

[31]  T. Stearns,et al.  Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. , 2015, Methods in cell biology.

[32]  P. Cullen,et al.  Identification of molecular heterogeneity in SNX27–retromer-mediated endosome-to-plasma-membrane recycling , 2014, Journal of Cell Science.

[33]  Christopher J. Staples,et al.  Ccdc13 is a novel human centriolar satellite protein required for ciliogenesis and genome stability , 2014, Journal of Cell Science.

[34]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[35]  Monkol Lek,et al.  Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy. , 2014, American journal of human genetics.

[36]  Guomin Liu,et al.  SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. , 2014, Journal of proteomics.

[37]  K. Anderson,et al.  Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo , 2014, Proceedings of the National Academy of Sciences.

[38]  J. Yates,et al.  Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication , 2014, Current Biology.

[39]  O. Gruss,et al.  The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone , 2014, Molecular biology of the cell.

[40]  T. Toda,et al.  Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation , 2014, EMBO reports.

[41]  Alberto D. Pascual-Montano,et al.  CentrosomeDB: a new generation of the centrosomal proteins database for Human and Drosophila melanogaster , 2013, Nucleic Acids Res..

[42]  N. Mailand,et al.  A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis , 2013, The EMBO journal.

[43]  Mary G. Lin,et al.  Autophagy Promotes Primary Ciliogenesis by Removing OFD1 from Centriolar Satellites , 2013, Nature.

[44]  E. Nigg,et al.  Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81 , 2013, Science.

[45]  L. Pelletier,et al.  CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation , 2013, Current Biology.

[46]  Burkhard Hoeckendorf,et al.  The centriolar satellite protein SSX2IP promotes centrosome maturation , 2013, The Journal of cell biology.

[47]  Gabrielle Wheway,et al.  The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium , 2013, Cilia.

[48]  David S. Sharlin,et al.  Disruption of Ttll5/Stamp Gene (Tubulin Tyrosine Ligase-like Protein 5/SRC-1 and TIF2-associated Modulatory Protein Gene) in Male Mice Causes Sperm Malformation and Infertility* , 2013, The Journal of Biological Chemistry.

[49]  T. Stearns,et al.  FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis , 2013, PloS one.

[50]  Ruedi Aebersold,et al.  Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling , 2013, Cell.

[51]  J. Eng,et al.  Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.

[52]  H. Maiato,et al.  Modulation of Golgi‐associated microtubule nucleation throughout the cell cycle , 2013, Cytoskeleton.

[53]  J. Tkemaladze,et al.  RNA in centrosomes: Structure and possible functions , 2012, Protoplasma.

[54]  M. Takeichi,et al.  Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules , 2012, Proceedings of the National Academy of Sciences.

[55]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[56]  K. Rhee,et al.  CEP90 Is Required for the Assembly and Centrosomal Accumulation of Centriolar Satellites, Which Is Essential for Primary Cilia Formation , 2012, PloS one.

[57]  Christopher J. Staples,et al.  The centriolar satellite protein Cep131 is important for genome stability , 2012, Journal of Cell Science.

[58]  T. Stearns,et al.  The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium , 2012, Molecular biology of the cell.

[59]  A. Gingras,et al.  CEP192 interacts physically and functionally with the K63-deubiquitinase CYLD to promote mitotic spindle assembly , 2012, Cell cycle.

[60]  Corinne Stoetzel,et al.  Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling , 2012, Cell.

[61]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[62]  O. Gruss,et al.  Centriolar satellites: busy orbits around the centrosome. , 2011, European journal of cell biology.

[63]  J. B. Rattner,et al.  Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes , 2011, BMC Cell Biology.

[64]  Emma Lundberg,et al.  Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods , 2011, The EMBO journal.

[65]  Andrew M Fry,et al.  Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1 , 2011, Journal of Cell Science.

[66]  K. Rhee,et al.  The pericentriolar satellite protein CEP90 is crucial for integrity of the mitotic spindle pole , 2011, Journal of Cell Science.

[67]  C. Sütterlin,et al.  Par6α Interacts with the Dynactin Subunit p150Glued and Is a Critical Regulator of Centrosomal Protein Recruitment , 2010, Molecular biology of the cell.

[68]  A. Hyman,et al.  HAUS, the 8-Subunit Human Augmin Complex, Regulates Centrosome and Spindle Integrity , 2009, Current Biology.

[69]  M. Oshimura,et al.  SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest , 2009, Cell cycle.

[70]  J. Gleeson,et al.  CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. , 2008, Human molecular genetics.

[71]  Robert H Singer,et al.  The dynamics of mammalian P body transport, assembly, and disassembly in vivo. , 2008, Molecular biology of the cell.

[72]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[73]  G. Goshima,et al.  Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle , 2008, The Journal of cell biology.

[74]  A. Spektor,et al.  Cep97 and CP110 Suppress a Cilia Assembly Program , 2007, Cell.

[75]  E. Nigg,et al.  Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity , 2007, The Journal of cell biology.

[76]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[77]  S. Elledge,et al.  The tumor suppressor CYLD regulates entry into mitosis , 2007, Proceedings of the National Academy of Sciences.

[78]  T. Stearns,et al.  Microtubule-organizing centres: a re-evaluation , 2007, Nature Reviews Molecular Cell Biology.

[79]  G. Fang,et al.  Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. , 2006, Molecular biology of the cell.

[80]  R. Palazzo,et al.  Centrosome-associated RNA in surf clam oocytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[81]  H. Gerdes,et al.  The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody. , 2006, Genomics.

[82]  J. Rosenbaum,et al.  Characterization of the Intraflagellar Transport Complex B Core , 2005, Journal of Biological Chemistry.

[83]  Andrey V Kajava,et al.  Tubulin Polyglutamylase Enzymes Are Members of the TTL Domain Protein Family , 2005, Science.

[84]  J. Delabie,et al.  Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization , 2005, Oncogene.

[85]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[86]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[87]  D. Fesquet,et al.  Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase , 2003, Journal of Cell Science.

[88]  Michael A. Tainsky,et al.  Role for Human SIRT2 NAD-Dependent Deacetylase Activity in Control of Mitotic Exit in the Cell Cycle , 2003, Molecular and Cellular Biology.

[89]  Jens Gruber,et al.  The mitotic-spindle-associated protein astrin is essential for progression through mitosis , 2002, Journal of Cell Science.

[90]  A. Merdes,et al.  Assembly of centrosomal proteins and microtubule organization depends on PCM-1 , 2002, The Journal of cell biology.

[91]  Alexey Khodjakov,et al.  Centrosome-independent mitotic spindle formation in vertebrates , 2000, Current Biology.

[92]  S. Tsukita,et al.  Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. , 1999 .

[93]  T. Schroer,et al.  Role for microtubules in centrosome doubling in Chinese hamster ovary cells. , 1999, Cell motility and the cytoskeleton.

[94]  A. Berk,et al.  Adenovirus E1B 55K Represses p53 Activation In Vitro , 1998, Journal of Virology.

[95]  M. Bornens,et al.  Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. , 1998, Cell motility and the cytoskeleton.

[96]  Y. Berwald‐Netter,et al.  Developmental regulation of polyglutamylated alpha- and beta-tubulin in mouse brain neurons. , 1994, Journal of cell science.

[97]  W. Zimmer,et al.  PCM-1, A 228-kD centrosome autoantigen with a distinct cell cycle distribution , 1994, The Journal of cell biology.

[98]  J. Rossier,et al.  Posttranslational glutamylation of alpha-tubulin. , 1990, Science.

[99]  F. J. Álvarez,et al.  High Density , 2023 .