Dynamic local remeshing for elastoplastic simulation

We propose a finite element simulation method that addresses the full range of material behavior, from purely elastic to highly plastic, for physical domains that are substantially reshaped by plastic flow, fracture, or large elastic deformations. To mitigate artificial plasticity, we maintain a simulation mesh in both the current state and the rest shape, and store plastic offsets only to represent the non-embeddable portion of the plastic deformation. To maintain high element quality in a tetrahedral mesh undergoing gross changes, we use a dynamic meshing algorithm that attempts to replace as few tetrahedra as possible, and thereby limits the visual artifacts and artificial diffusion that would otherwise be introduced by repeatedly remeshing the domain from scratch. Our dynamic mesher also locally refines and coarsens a mesh, and even creates anisotropic tetrahedra, wherever a simulation requests it. We illustrate these features with animations of elastic and plastic behavior, extreme deformations, and fracture.

[1]  Hamid R. Noori on "Dynamic local remeshing for elastoplastic simulation" , 2011 .

[2]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[3]  Markus H. Gross,et al.  Deforming meshes that split and merge , 2009, ACM Trans. Graph..

[4]  James F. O'Brien,et al.  Interactive simulation of surgical needle insertion and steering , 2009, ACM Trans. Graph..

[5]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[6]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[7]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[8]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[9]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[10]  Adam W. Bargteil,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[11]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[12]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[13]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Fast Arbitrary Splitting of Deforming Objects , 2022 .

[14]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[15]  Gábor Székely,et al.  Hybrid Cutting of Deformable Solids , 2006, IEEE Virtual Reality Conference (VR 2006).

[16]  Z. Zhao,et al.  LAGRANGIAN SIMULATION OF PENETRATION ENVIRONMENTS VIA MESH HEALING AND ADAPTIVE OPTIMIZATION S , 2006 .

[17]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[18]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[19]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[20]  R. Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[21]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[22]  Markus H. Gross,et al.  Physically-based simulation of objects represented by surface meshes , 2004, Proceedings Computer Graphics International, 2004..

[23]  Gary L. Miller,et al.  A bézier-based approach to unstructured moving meshes , 2004, SCG '04.

[24]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[25]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[26]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[27]  Herbert Edelsbrunner,et al.  An Experimental Study of Sliver Exudation , 2002, Engineering with Computers.

[28]  Steve Capell,et al.  A multiresolution framework for dynamic deformations , 2002, SCA '02.

[29]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[30]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[31]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[32]  J. Shewchuk Two Discrete Optimization Algorithms for the Topological Improvement of Tetrahedral Meshes , 2002 .

[33]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[34]  Valerio Pascucci,et al.  Multi-resolution dynamic meshes with arbitrary deformations , 2000, IEEE Visualization.

[35]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[36]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[37]  Paolo Cignoni,et al.  Enabling cuts on multiresolution representation , 2000, Proceedings Computer Graphics International 2000.

[38]  Markus H. Gross,et al.  Interactive Cuts through 3‐Dimensional Soft Tissue , 1999, Comput. Graph. Forum.

[39]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[40]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[41]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[42]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[43]  Mark T. Jones,et al.  Adaptive refinement of unstructured finite-element meshes , 1997 .

[44]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[45]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[46]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[47]  Barry Joe,et al.  Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations , 1995, SIAM J. Sci. Comput..

[48]  V. Parthasarathy,et al.  A comparison of tetrahedron quality measures , 1994 .

[49]  S. Canann,et al.  Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .

[50]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[51]  Leszek Demkowicz,et al.  Advances in adaptive improvements : A survey of adaptive finite element methods in computational mechanics , 1988 .

[52]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[53]  G. Klincsek Minimal Triangulations of Polygonal Domains , 1980 .

[54]  L. Herrmann Laplacian-Isoparametric Grid Generation Scheme , 1976 .

[55]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .