DEVELOPMENT OF CONDITION PREDICTION MODELS FOR SANITARY SEWER PIPES

[1]  S. Seo A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets , 2006 .

[2]  Amarjit Singh,et al.  Bathtub curves and pipe prioritization based on failure rate , 2013 .

[3]  N. D. Lewis,et al.  Deep Learning Made Easy with R: A Gentle Introduction For Data Science , 2016 .

[4]  George Morcous,et al.  Modeling Bridge Deterioration Using Case-Based Reasoning , 2002 .

[5]  Wei Yang,et al.  Experimental investigation on corrosion effect on mechanical properties of buried metal pipes , 2016 .

[6]  S. Jacques,et al.  Corrosion resistance of stainless steel pipes in soil , 2011 .

[7]  Drew McDermott,et al.  Introduction to artificial intelligence , 1986, Addison-Wesley series in computer science.

[8]  Forecasting Oxygen Demand in Treatment Plant Using Artificial Neural Networks , 2018 .

[9]  Dulcy M. Abraham,et al.  An Ordered Probit Model Approach for Developing Markov Chain Based Deterioration Model for Wastewater Infrastructure Systems , 2005 .

[10]  Tarek Zayed,et al.  Condition Prediction for Cured-in-Place Pipe Rehabilitation of Sewer Mains , 2016 .

[11]  Ahmad Ghazi Altarabsheh Managing urban wastewater system using complex adaptive system approach , 2016 .

[12]  Dulcy M. Abraham,et al.  NEURO-FUZZY APPROACHES FOR SANITARY SEWER PIPELINE CONDITION ASSESSMENT , 2001 .

[13]  Moustafa A. Moteleb Risk Based Decision Making Tools for Sewer Infrastructure Management , 2010 .

[14]  Balvant Rajani,et al.  A methodology to estimate remaining service life of grey cast iron water mains , 2000 .

[15]  Tarek Zayed,et al.  Condition Rating Model for Underground Infrastructure Sustainable Water Mains , 2006 .

[16]  Baris Salman,et al.  Infrastructure Management and Deterioration Risk Assessment of Wastewater Collection Systems , 2010 .

[17]  Laverne W. Stanton,et al.  Applied Regression Analysis: A Research Tool , 1990 .

[18]  Mohammad Najafi,et al.  Use of Cut-and-Cover Method for Pipeline Installation in Underground Freight Transportation , 2017 .

[19]  Tarek Zayed,et al.  Condition Prediction for Chemical Grouting Rehabilitation of Sewer Networks , 2016 .

[20]  Samer Madanat,et al.  Poisson Regression Models of Infrastructure Transition Probabilities , 1995 .

[21]  A. Karr Exploratory Data Mining and Data Cleaning , 2006 .

[22]  Murray W. F. Grabinsky,et al.  The role of soil in the external corrosion of cast iron water mains in Toronto, Canada , 2003 .

[23]  B. J. C. Perera,et al.  Neural networks deterioration models for serviceability condition of buried stormwater pipes , 2007, Eng. Appl. Artif. Intell..

[24]  HarveyRobert Richard,et al.  Predicting the structural condition of individual sanitary sewer pipes with random forests , 2014 .

[25]  Farzana Atique Analysis of urban pipe deterioration using Copula method , 2016 .

[26]  Dulcy M. Abraham,et al.  Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks , 2018, Automation in Construction.

[27]  Jidong Yang,et al.  Road crack condition performance modeling using recurrent Markov chains and artificial neural networks , 2004 .

[28]  Andreas Holzinger,et al.  Data Mining with Decision Trees: Theory and Applications , 2015, Online Inf. Rev..

[29]  Rehan Sadiq,et al.  Modeling failure risk in buried pipes using fuzzy Markov deterioration process , 2019 .

[30]  Jeffrey S. Simonoff,et al.  Handbook of Regression Analysis , 2012 .

[31]  Dulcy M. Abraham,et al.  Estimating Transition Probabilities in Markov Chain-Based Deterioration Models for Management of Wastewater Systems , 2006 .

[32]  G. Kuczera,et al.  Markov Model for Storm Water Pipe Deterioration , 2002 .

[33]  J. P. Matos,et al.  Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition , 2014 .

[34]  Martin T. Hagan,et al.  Neural network design , 1995 .

[35]  Raymond Kurzweil,et al.  Age of intelligent machines , 1990 .

[36]  T LubiniAlain,et al.  Modeling of the deterioration timeline of sewer systems , 2011 .

[37]  M. Bergman,et al.  CALIBRATION OF STORM LOADS IN THE SOUTH PRONG WATERSHED, FLORIDA, USING BASINS/HSPF 1 , 2002 .

[38]  Y. Le Gat,et al.  Modelling the deterioration process of drainage pipelines , 2008 .

[39]  Mohammad Najafi,et al.  An Analysis of Soil Hauling Operations for Tunneling and Pipeline Installation , 2017 .

[40]  Robert J. Mair,et al.  Centrifuge modelling of the effects of soil loading on flexible sewer liners , 2007 .

[41]  Edward A. McBean,et al.  Comparing the utility of decision trees and support vector machines when planning inspections of linear sewer infrastructure , 2014 .

[42]  Fazal ur Rehman M Chughtai Integrated condition assessment models for sustainable sewer pipelines , 2007 .

[43]  Tarek Zayed,et al.  Simulation-Based Condition Assessment Model for Sewer Pipelines , 2017 .

[44]  Glenn Gamst,et al.  Applied Multivariate Research: Design and Interpretation , 2005 .

[45]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[46]  Janina Decker,et al.  Trenchless Technology Pipeline And Utility Design Construction And Renewal , 2016 .

[47]  J. Bhattarai Study on the Corrosive Nature of Soil Towards the Buried-Structures , 2013 .

[48]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[49]  Charles E. Kellogg,et al.  Soil Survey Manual , 2017 .

[50]  R Baur,et al.  Selective inspection planning with ageing forecast for sewer types. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[51]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[52]  Steven J. Burian,et al.  Urban Wastewater Management in the United States: Past, Present, and Future , 2000 .

[53]  Tarek Zayed,et al.  Structural Condition Assessment of Sewer Pipelines , 2010 .

[54]  Sunil K. Sinha,et al.  Probabilistic based integrated pipeline management system , 2007 .

[55]  Tarek Zayed,et al.  Structural Condition Models for Sewer Pipeline , 2007 .

[56]  Tarek Zayed,et al.  Integrating WRc and CERIU Condition Assessment Models and Classification Protocols for Sewer Pipelines , 2011 .

[57]  P. Simon Too Big to Ignore: The Business Case for Big Data , 2013 .

[58]  Anand J. Puppala,et al.  Life-Cycle cost-benefit analysis of Bridge deck de-icing using geothermal heat pump system: A case study of North Texas , 2019, Sustainable Cities and Society.

[59]  Ayako Yajima,et al.  Assessment of Soil Corrosion in Underground Pipelines via Statistical Inference , 2015 .

[60]  Gerardo W. Flintsch,et al.  Soft Computing Applications in Infrastructure Management , 2004 .

[61]  Tarek Zayed,et al.  Infrastructure Condition Prediction Models for Sustainable Sewer Pipelines , 2008 .

[62]  M Maurer,et al.  Network condition simulator for benchmarking sewer deterioration models. , 2011, Water research.

[63]  Emeka Emanuel Oguzie,et al.  Monitoring the corrosion susceptibility of mild steel in varied soil textures by corrosion product count technique , 2004 .

[64]  Dulcy M. Abraham,et al.  CHALLENGING ISSUES IN MODELING DETERIORATION OF COMBINED SEWERS , 2001 .

[65]  Jan Kozak,et al.  Decision Tree and Ensemble Learning Based on Ant Colony Optimization , 2018, Decision Tree and Ensemble Learning Based on Ant Colony Optimization.

[66]  Colin S. Chung,et al.  Decision Tree–Based Deterioration Model for Buried Wastewater Pipelines , 2013 .

[67]  Guru Kulandaivel,et al.  Pipeline Condition Prediction Using Neural Network Models , 2005 .

[68]  Oliver Kramer,et al.  Dimensionality Reduction with Unsupervised Nearest Neighbors , 2013, Intelligent Systems Reference Library.

[69]  Mohammad Najafi,et al.  Condition Prediction of Sanitary Sewer Pipes , 2019, Pipelines 2019.

[70]  Erwan Scornet,et al.  A random forest guided tour , 2015, TEST.

[71]  M P O'reilly,et al.  ANALYSIS OF DEFECTS IN 180KM OF PIPE SEWERS IN SOUTHERN WATER AUTHORITY , 1989 .

[72]  Samuel T. Ariaratnam,et al.  Assessment of Infrastructure Inspection Needs Using Logistic Models , 2001 .

[73]  A. Angelotti,et al.  Assessment of thermal behaviour of thermo-active diaphragm walls based on monitoring data , 2018, Journal of Rock Mechanics and Geotechnical Engineering.

[74]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[75]  Tarek Zayed,et al.  Sewer Pipeline Operational Condition Prediction using Multiple Regression , 2007 .

[76]  Hyeoun-Ae Park An introduction to logistic regression: from basic concepts to interpretation with particular attention to nursing domain. , 2013, Journal of Korean Academy of Nursing.

[77]  James E. Helmreich Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression and Survival Analysis (2nd Edition) , 2016 .

[78]  Mohammad Najafi,et al.  Development of a Framework for Design and Installation of a New Lining Material for Water Pipeline Renewal , 2019 .

[79]  J. P. Davies,et al.  Factors influencing the structural deterioration and collapse of rigid sewer pipes , 2001 .

[80]  George M. Ayoub,et al.  Assessment of hydrogen sulphide corrosion of cementitious sewer pipes: a case study , 2004 .

[81]  J. Suárez,et al.  Stormwater quality calibration by SWMM : a case study in Northern Spain , 2007 .

[82]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[83]  E. N. Allouche Management and maintenance practices of storm and sanitary sewers in Canadian Municipalities by : , 2002 .

[84]  P. E. Hill The Sanitary City: Urban Infrastructure in America from Colonial Times to the Present , 2001 .

[85]  J M Yan,et al.  Fuzzy Approach for Pipe Condition Assessment , 2003 .

[86]  Steven J. Burian,et al.  Modeling the atmospheric deposition and stormwater washoff of nitrogen compounds , 2001, Environ. Model. Softw..

[87]  Mary Catherine Opila Structural condition scoring of buried sewer pipes for risk-based decision making , 2011 .

[88]  S. Guleria,et al.  Geotechnical Investigation of Black Cotton Soils , 2015 .

[89]  A. Agresti An introduction to categorical data analysis , 1997 .

[90]  Ossama Salem,et al.  Modeling Failure of Wastewater Collection Lines Using Various Section-Level Regression Models , 2012 .

[91]  Sophie Duchesne,et al.  Modélisation de l'évolution de l'état structural des réseaux d'égout : application à une municipalité du Québec , 2000 .

[92]  S. Smolders,et al.  An investigation of the factors influencing sewer structural deterioration , 2009 .

[93]  Ali Gedam,et al.  Prediction of Sewer Pipe Main Condition Using the Linear Regression Approach , 2016 .

[94]  John Mashford,et al.  Prediction of Sewer Condition Grade Using Support Vector Machines , 2011, J. Comput. Civ. Eng..

[95]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[96]  Huu Dung Tran,et al.  Investigation of deterioration models for stormwater pipe systems , 2007 .

[97]  Dahai Zhang,et al.  A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost , 2018, IEEE Access.

[98]  I. Moore,et al.  Effect of Backfill Erosion on Moments in Buried Rigid Pipes , 2007 .

[99]  Dulcy M. Abraham,et al.  Optimization Modeling for Sewer Network Management , 1998 .

[100]  Jack Q. Zhao,et al.  Condition assessment and rehabilitation of large sewers , 2020 .

[101]  Tae il Park A comprehensive asset management system for sewer infrastructures , 2009 .

[102]  I. Mellin,et al.  Sewer Condition Prediction and Analysis of Explanatory Factors , 2018, Water.

[103]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[104]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[105]  I. Moore,et al.  Numerical modeling of tight fitting flexible liner in damaged sewer under earth loads , 2007 .