Comparing Johnson's SB and Weibull Functions to Model the Diameter Distribution of Forest Plantations through ALS Data

The analysis of the diameter distribution is important for forest management since the knowledge of tree density and growing stock by diameter classes is essential to define management plans and to support operational decisions. The modeling of diameter distributions from airborne laser scanning (ALS) data has been performed through the two-parameter Weibull probability density function (PDF), but the more flexible PDF Johnson’s SB has never been tested for this purpose until now. This study evaluated the performance of the Johnson’s SB to predict the diameter distributions based on ALS data from two of the most common forest plantations in the northwest of the Iberian Peninsula (Eucalyptus globulus Labill. and Pinus radiata D. Don). The Weibull PDF was taken as a benchmark for the diameter distributions prediction and both PDFs were fitted with ALS data. The results show that the SB presented a comparable performance to the Weibull for both forest types. The SB presented a slightly better performance for the E. globulus, while the Weibull PDF had a small advantage when applied to the P. radiata data. The Johnson’s SB PDF is more flexible but also more sensitive to possible errors arising from the higher number of stand variables needed for the estimation of the PDF parameters.

[1]  M. Nilsson,et al.  A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory , 2017 .

[2]  Terje Gobakken,et al.  Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data , 2004 .

[3]  Keith Rennolls,et al.  A new parameterization of Johnson's SB distribution with application to fitting forest tree diameter data , 2005, Canadian Journal of Forest Research.

[4]  R. Bailey,et al.  Percentile-Based Distributions Characterize Forest Stand Tables , 1987, Forest Science.

[5]  T. R. Dell,et al.  Quantifying Diameter Distributions with the Weibull Function , 1973 .

[6]  J. Hyyppä,et al.  OPTIMIZATION OF THE SCANNING ANGLE FOR COUNTRYWIDE LASER SCANNING , 2005 .

[7]  Marek K. Jakubowski,et al.  Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .

[8]  Eduardo González-Ferreiro,et al.  Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .

[9]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[10]  M. Maltamo,et al.  Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data , 2006 .

[11]  Julio Eduardo Arce,et al.  PROPOSTA METODOLÓGICA PARA O AJUSTE ÓTIMO DA DISTRIBUIÇÃO DIAMÉTRICA WEIBULL 3P , 2004 .

[12]  T. Fonseca,et al.  Describing Maritime Pine Diameter Distributions with Johnson's SB Distribution Using a New All-Parameter Recovery Approach , 2009, Forest Science.

[13]  E. Næsset,et al.  Non-parametric prediction of diameter distributions using airborne laser scanner data , 2009 .

[14]  Erik Næsset,et al.  Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data , 2007 .

[15]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[16]  Timo Pukkala,et al.  Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain) , 2007, European Journal of Forest Research.

[17]  S. Machado,et al.  Proposta metodológica para o ajuste ótimo da distribuição diamétrica SB de Johnson , 2011 .

[18]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[19]  A. Cámara-Obregón,et al.  A comparison of estimation methods for fitting Weibull, Johnson's SB and beta functions to Pinus pinaster, Pinus radiata and Pinus sylvestris stands in northwest Spain. , 2012 .

[20]  M. Newby,et al.  The Properties of Moment Estimators for the Weibull Distribution Based on the Sample Coeffkient of Variation , 1980 .

[21]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[22]  Frédéric Bretar,et al.  Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[23]  T. Fonseca,et al.  Numerical details and SAS programs for parameter recovery of the SB distribution , 2010 .

[24]  Xiaowei Yu,et al.  Reliability of the predicted stand structure for clear-cut stands using optional methods: airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO , 2016 .

[25]  J. Scolforo,et al.  SB distribution’s accuracy to represent the diameter distribution of Pinus taeda, through five fitting methods , 2003 .

[26]  Margarida Tomé,et al.  Equação de Volume Total, Volume Percentual e de Perfil do Tronco para Eucalyptus globulus Labill. em Portugal , 2007 .

[27]  Terje Gobakken,et al.  Effects of Pulse Density on Digital Terrain Models and Canopy Metrics Using Airborne Laser Scanning in a Tropical Rainforest , 2015, Remote. Sens..

[28]  B. Parresol Recovering Parameters of Johnson's S B Distribution , 2003 .

[29]  L. Mehtätalo,et al.  Comparing regression estimation techniques when predicting diameter distributions of Scots pine on drained peatlands , 2007 .

[30]  P. Fernandes,et al.  Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands , 2012 .

[31]  H. Schreuder,et al.  Statistical distributions for fitting diameter and height data in even-aged stands , 1977 .

[32]  K. Lim,et al.  LiDAR and Weibull modeling of diameter and basal area , 2008 .

[33]  Ana Daría Ruiz-González,et al.  Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data , 2017, PloS one.

[34]  Nicholas C. Coops,et al.  Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data , 2019, Remote Sensing of Environment.

[35]  U. Diéguez-Aranda,et al.  Modelling canopy fuel variables in Pinus pinaster Ait. and Pinus radiata D. Don stands in northwestern Spain , 2012, Annals of Forest Science.

[36]  M. I. Ahmad,et al.  Nonlinear regression approach to estimating Johnson SB parameters for diameter data , 1999 .

[37]  L. Korhonen,et al.  Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. , 2016 .

[38]  M. Maltamo,et al.  Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .

[39]  Petteri Packalen,et al.  Airborne laser scanning for tree diameter distribution modelling: a comparison of different modelling alternatives in a tropical single-species plantation , 2018 .

[40]  Juan de la Riva,et al.  Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment , 2014, Remote. Sens..

[41]  Frédéric Bretar,et al.  3-D mapping of a multi-layered Mediterranean forest using ALS data , 2012 .

[42]  H. Theil,et al.  Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations , 1962 .

[43]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[44]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[45]  Thomas E. Burk,et al.  Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.

[46]  M. Tomé,et al.  Modelling the diameter distribution of eucalyptus plantations with Johnson’s SB probability density function: parameters recovery from a compatible system of equations to predict stand variables , 2011, Annals of Forest Science.

[47]  C. Pérez-Cruzado,et al.  Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data , 2018, Annals of Forest Science.

[48]  Q. J. Wang DIRECT SAMPLE ESTIMATORS OF L MOMENTS , 1996 .

[49]  Terje Gobakken,et al.  Predicting Tree Diameter Distributions , 2014 .

[50]  Eduardo González-Ferreiro,et al.  Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data , 2014 .

[51]  E. Næsset,et al.  Weibull and percentile models for lidar-based estimation of basal area distribution , 2005 .

[52]  M. Tomé,et al.  Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis , 2016 .

[53]  K. Lim,et al.  Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence forest of Ontario , 2008 .

[54]  M. Maltamo,et al.  Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .

[55]  T. Zawila-Niedzwiecki,et al.  Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests , 2016 .

[56]  Piermaria Corona,et al.  Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy , 2012 .

[57]  T. Burk,et al.  Notes: A Simple Algorithm for Moment-Based Recovery of Weibull Distribution Parameters , 1984 .

[58]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[59]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[60]  Harold E. Burkhart,et al.  Modeling Forest Trees and Stands , 2012, Springer Netherlands.

[61]  U. Diéguez-Aranda,et al.  A growth model for Pinus radiata D. Don stands in north-western Spain , 2007, Annals of Forest Science.

[62]  J. Siipilehto A comparison of two parameter prediction methods for stand structure in Finland , 2000 .

[63]  Alberto García-Martín,et al.  Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest , 2016 .

[64]  Harold E. Burkhart,et al.  A bivariate distribution approach to modeling forest diameter distributions at two points in time , 1991 .

[65]  M. Maltamo,et al.  Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning , 2014 .

[66]  M. Maltamo,et al.  Calibration of nationwide airborne laser scanning based stem volume models , 2018, Remote Sensing of Environment.

[67]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[68]  A. Henningsen,et al.  systemfit: A Package for Estimating Systems of Simultaneous Equations in R , 2007 .

[69]  Thomas Nord-Larsen,et al.  Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data , 2010 .

[70]  Johannes Breidenbach,et al.  Estimation of diameter distributions by means of airborne laser scanner data , 2008 .

[71]  Andrej-Nikolai Spiess,et al.  Title R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds , 2015 .

[72]  J. McTague,et al.  Comparison and evaluation of five methods of estimation of the Johnson system parameters , 1996 .

[73]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[74]  R. H. Myers Classical and modern regression with applications , 1986 .

[75]  Gil Rito Gonçalves,et al.  A Thorough Accuracy Estimation of DTM Produced From Airborne Full-Waveform Laser Scanning Data of Unmanaged Eucalypt Plantations , 2012, IEEE Transactions on Geoscience and Remote Sensing.