Comparing Johnson's SB and Weibull Functions to Model the Diameter Distribution of Forest Plantations through ALS Data
暂无分享,去创建一个
Juan Guerra-Hernández | Diogo Nepomuceno Cosenza | Paula Soares | Luísa Pereira | Eduardo González-Ferreiro | Fernando Castedo-Dorado | Margarida Tomé | L. Pereira | M. Tomé | J. Guerra-Hernández | E. González-Ferreiro | D. N. Cosenza | Fernando Castedo‐Dorado | P. Soares
[1] M. Nilsson,et al. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory , 2017 .
[2] Terje Gobakken,et al. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data , 2004 .
[3] Keith Rennolls,et al. A new parameterization of Johnson's SB distribution with application to fitting forest tree diameter data , 2005, Canadian Journal of Forest Research.
[4] R. Bailey,et al. Percentile-Based Distributions Characterize Forest Stand Tables , 1987, Forest Science.
[5] T. R. Dell,et al. Quantifying Diameter Distributions with the Weibull Function , 1973 .
[6] J. Hyyppä,et al. OPTIMIZATION OF THE SCANNING ANGLE FOR COUNTRYWIDE LASER SCANNING , 2005 .
[7] Marek K. Jakubowski,et al. Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .
[8] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[9] H. Lilliefors. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .
[10] M. Maltamo,et al. Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data , 2006 .
[11] Julio Eduardo Arce,et al. PROPOSTA METODOLÓGICA PARA O AJUSTE ÓTIMO DA DISTRIBUIÇÃO DIAMÉTRICA WEIBULL 3P , 2004 .
[12] T. Fonseca,et al. Describing Maritime Pine Diameter Distributions with Johnson's SB Distribution Using a New All-Parameter Recovery Approach , 2009, Forest Science.
[13] E. Næsset,et al. Non-parametric prediction of diameter distributions using airborne laser scanner data , 2009 .
[14] Erik Næsset,et al. Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data , 2007 .
[15] E. Næsset. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .
[16] Timo Pukkala,et al. Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain) , 2007, European Journal of Forest Research.
[17] S. Machado,et al. Proposta metodológica para o ajuste ótimo da distribuição diamétrica SB de Johnson , 2011 .
[18] K. Kraus,et al. Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .
[19] A. Cámara-Obregón,et al. A comparison of estimation methods for fitting Weibull, Johnson's SB and beta functions to Pinus pinaster, Pinus radiata and Pinus sylvestris stands in northwest Spain. , 2012 .
[20] M. Newby,et al. The Properties of Moment Estimators for the Weibull Distribution Based on the Sample Coeffkient of Variation , 1980 .
[21] Sanford Weisberg,et al. An R Companion to Applied Regression , 2010 .
[22] Frédéric Bretar,et al. Canopy Density Model: A New ALS-Derived Product to Generate Multilayer Crown Cover Maps , 2015, IEEE Transactions on Geoscience and Remote Sensing.
[23] T. Fonseca,et al. Numerical details and SAS programs for parameter recovery of the SB distribution , 2010 .
[24] Xiaowei Yu,et al. Reliability of the predicted stand structure for clear-cut stands using optional methods: airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO , 2016 .
[25] J. Scolforo,et al. SB distribution’s accuracy to represent the diameter distribution of Pinus taeda, through five fitting methods , 2003 .
[26] Margarida Tomé,et al. Equação de Volume Total, Volume Percentual e de Perfil do Tronco para Eucalyptus globulus Labill. em Portugal , 2007 .
[27] Terje Gobakken,et al. Effects of Pulse Density on Digital Terrain Models and Canopy Metrics Using Airborne Laser Scanning in a Tropical Rainforest , 2015, Remote. Sens..
[28] B. Parresol. Recovering Parameters of Johnson's S B Distribution , 2003 .
[29] L. Mehtätalo,et al. Comparing regression estimation techniques when predicting diameter distributions of Scots pine on drained peatlands , 2007 .
[30] P. Fernandes,et al. Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands , 2012 .
[31] H. Schreuder,et al. Statistical distributions for fitting diameter and height data in even-aged stands , 1977 .
[32] K. Lim,et al. LiDAR and Weibull modeling of diameter and basal area , 2008 .
[33] Ana Daría Ruiz-González,et al. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data , 2017, PloS one.
[34] Nicholas C. Coops,et al. Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data , 2019, Remote Sensing of Environment.
[35] U. Diéguez-Aranda,et al. Modelling canopy fuel variables in Pinus pinaster Ait. and Pinus radiata D. Don stands in northwestern Spain , 2012, Annals of Forest Science.
[36] M. I. Ahmad,et al. Nonlinear regression approach to estimating Johnson SB parameters for diameter data , 1999 .
[37] L. Korhonen,et al. Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. , 2016 .
[38] M. Maltamo,et al. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .
[39] Petteri Packalen,et al. Airborne laser scanning for tree diameter distribution modelling: a comparison of different modelling alternatives in a tropical single-species plantation , 2018 .
[40] Juan de la Riva,et al. Forest Fire Severity Assessment Using ALS Data in a Mediterranean Environment , 2014, Remote. Sens..
[41] Frédéric Bretar,et al. 3-D mapping of a multi-layered Mediterranean forest using ALS data , 2012 .
[42] H. Theil,et al. Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations , 1962 .
[43] Peter Dalgaard,et al. R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .
[44] Xiaoye Liu,et al. Airborne LiDAR for DEM generation: some critical issues , 2008 .
[45] Thomas E. Burk,et al. Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.
[46] M. Tomé,et al. Modelling the diameter distribution of eucalyptus plantations with Johnson’s SB probability density function: parameters recovery from a compatible system of equations to predict stand variables , 2011, Annals of Forest Science.
[47] C. Pérez-Cruzado,et al. Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data , 2018, Annals of Forest Science.
[48] Q. J. Wang. DIRECT SAMPLE ESTIMATORS OF L MOMENTS , 1996 .
[49] Terje Gobakken,et al. Predicting Tree Diameter Distributions , 2014 .
[50] Eduardo González-Ferreiro,et al. Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data , 2014 .
[51] E. Næsset,et al. Weibull and percentile models for lidar-based estimation of basal area distribution , 2005 .
[52] M. Tomé,et al. Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis , 2016 .
[53] K. Lim,et al. Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence forest of Ontario , 2008 .
[54] M. Maltamo,et al. Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .
[55] T. Zawila-Niedzwiecki,et al. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests , 2016 .
[56] Piermaria Corona,et al. Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy , 2012 .
[57] T. Burk,et al. Notes: A Simple Algorithm for Moment-Based Recovery of Weibull Distribution Parameters , 1984 .
[58] Joanne C. White,et al. Lidar sampling for large-area forest characterization: A review , 2012 .
[59] Sahibsingh A. Dudani. The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[60] Harold E. Burkhart,et al. Modeling Forest Trees and Stands , 2012, Springer Netherlands.
[61] U. Diéguez-Aranda,et al. A growth model for Pinus radiata D. Don stands in north-western Spain , 2007, Annals of Forest Science.
[62] J. Siipilehto. A comparison of two parameter prediction methods for stand structure in Finland , 2000 .
[63] Alberto García-Martín,et al. Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest , 2016 .
[64] Harold E. Burkhart,et al. A bivariate distribution approach to modeling forest diameter distributions at two points in time , 1991 .
[65] M. Maltamo,et al. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning , 2014 .
[66] M. Maltamo,et al. Calibration of nationwide airborne laser scanning based stem volume models , 2018, Remote Sensing of Environment.
[67] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[68] A. Henningsen,et al. systemfit: A Package for Estimating Systems of Simultaneous Equations in R , 2007 .
[69] Thomas Nord-Larsen,et al. Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data , 2010 .
[70] Johannes Breidenbach,et al. Estimation of diameter distributions by means of airborne laser scanner data , 2008 .
[71] Andrej-Nikolai Spiess,et al. Title R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds , 2015 .
[72] J. McTague,et al. Comparison and evaluation of five methods of estimation of the Johnson system parameters , 1996 .
[73] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[74] R. H. Myers. Classical and modern regression with applications , 1986 .
[75] Gil Rito Gonçalves,et al. A Thorough Accuracy Estimation of DTM Produced From Airborne Full-Waveform Laser Scanning Data of Unmanaged Eucalypt Plantations , 2012, IEEE Transactions on Geoscience and Remote Sensing.