Recent Developments on Mapping Reversible Circuits to Quantum Gate Libraries

This paper reviews recent developments on mapping reversible circuits to libraries of elementary quantum gates. The emphasis is on optimization of both the initial reversible circuit and the resulting quantum circuit. At the quantum level, improved realizations of single mixed-polarity multiple-control Toffoli gates are presented as well as techniques for performing quantum gate optimizations across Toffoli gate boundaries. Experimental results show the effectiveness of the methods presented using circuits from the REVLIB benchmark suite.

[1]  D. Michael Miller,et al.  Transforming MCT Circuits to NCVW Circuits , 2011, RC.

[2]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[3]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[4]  Robert Wille,et al.  RevLib: An Online Resource for Reversible Functions and Reversible Circuits , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[5]  D. Michael Miller,et al.  Lower cost quantum gate realizations of multiple-control Toffoli gates , 2009, 2009 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[6]  Robert Wille,et al.  Reducing Reversible Circuit Cost by Adding Lines , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.

[7]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Dmitri Maslov,et al.  Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits , 2007, IET Comput. Digit. Tech..

[9]  Anas N. Al-Rabadi Reversible Logic Synthesis , 2003 .

[10]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[11]  Robert Wille,et al.  Elementary Quantum Gate Realizations for Multiple-Control Toffoli Gates , 2011, 2011 41st IEEE International Symposium on Multiple-Valued Logic.

[12]  Gerhard W. Dueck,et al.  Improved quantum cost for n-bit Toffoli gates , 2003 .

[13]  Robert Wille,et al.  Towards a Design Flow for Reversible Logic , 2010 .

[14]  A. Mishchenko,et al.  Fast Heuristic Minimization of Exclusive-Sums-of-Products , 2001 .

[15]  Gerhard W. Dueck,et al.  Reversible Logic Synthesis , 2020, Reversible and DNA Computing.

[16]  Gerhard W. Dueck,et al.  Quantum circuit simplification using templates , 2005, Design, Automation and Test in Europe.

[17]  D. Michael Miller,et al.  DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[18]  D. Michael Miller,et al.  Reversible and Quantum Circuit Optimization: A Functional Approach , 2012, RC.

[19]  D.M. Miller,et al.  Fredkin/Toffoli templates for reversible logic synthesis , 2003, ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486).

[20]  Robert Wille,et al.  Realizing reversible circuits using a new class of quantum gates , 2012, DAC Design Automation Conference 2012.

[21]  Robert Wille,et al.  Optimizing the Mapping of Reversible Circuits to Four-Valued Quantum Gate Circuits , 2012, 2012 IEEE 42nd International Symposium on Multiple-Valued Logic.

[22]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.