Broadband Nonreciprocal Amplification in Luminal Metamaterials.

Time has emerged as a new degree of freedom for metamaterials, promising new pathways in wave control. However, electromagnetism suffers from limitations in the modulation speed of material parameters. Here we argue that these limitations can be circumvented by introducing a traveling-wave modulation, with the same phase velocity of the waves. We show how luminal metamaterials generalize the parametric oscillator concept, realize giant broadband nonreciprocity, achieve efficient one-way amplification, pulse compression, and harmonic generation, and propose a realistic implementation in double-layer graphene.

[1]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[2]  Steven G. Johnson,et al.  Floquet Chern insulators of light , 2019, Nature Communications.

[3]  Anastasios D. Koulouklidis,et al.  Experimental Demonstration of Ultrafast THz Modulation in a Graphene-Based Thin Film Absorber through Negative Photoinduced Conductivity , 2019, ACS photonics.

[4]  C. Caloz,et al.  Linear Pulse Compansion using Co-propagating Space-Time Modulation. , 2018, 1810.04129.

[5]  S. Tretyakov,et al.  Electromagnetic Nonreciprocity , 2018, Physical Review Applied.

[6]  C. Caloz,et al.  Scattering in Subluminal and Superluminal Space-Time Crystals , 2018, 1808.02863.

[7]  D. Englund,et al.  Probing the ultimate plasmon confinement limits with a van der Waals heterostructure , 2018, Science.

[8]  Christophe Caloz,et al.  What is Nonreciprocity , 2018, 1804.00235.

[9]  Andrea Alù,et al.  Broadband passive isolators based on coupled nonlinear resonances , 2018 .

[10]  F. Santosa,et al.  Temporal control of graphene plasmons , 2018, Physical Review B.

[11]  A. Alú,et al.  Non-reciprocal photonics based on time modulation , 2017 .

[12]  Romain Fleury,et al.  Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems , 2017, 1711.08152.

[13]  Harish Krishnaswamy,et al.  Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity , 2017, Nature Communications.

[14]  J. Kinaret,et al.  Current-controlled light scattering and asymmetric plasmon propagation in graphene , 2017, 1710.00338.

[15]  R. Fleury,et al.  Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems. , 2017, Physical review letters.

[16]  Christophe Caloz,et al.  Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator , 2017, 1705.06311.

[17]  M. Silveirinha,et al.  Negative Landau Damping in Bilayer Graphene. , 2017, Physical review letters.

[18]  Jérôme Faist,et al.  Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene , 2017, Nature Communications.

[19]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[20]  S. Fan,et al.  Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension , 2016, Nature Communications.

[21]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[22]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[23]  N. Peres,et al.  An Introduction to Graphene Plasmonics , 2016, 1609.04450.

[24]  Yichen Shen,et al.  Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene , 2016, Nature Communications.

[25]  Jason Soric,et al.  Breaking temporal symmetries for emission and absorption , 2016, Proceedings of the National Academy of Sciences.

[26]  Takashi Taniguchi,et al.  Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. , 2016, Nature nanotechnology.

[27]  D. Basov,et al.  Adiabatic Amplification of Plasmons and Demons in 2D Systems. , 2016, Physical review letters.

[28]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[29]  C. Stampfer,et al.  Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper , 2015, Science Advances.

[30]  Philippe Tassin,et al.  Tunable terahertz frequency comb generation using time-dependent graphene sheets , 2015 .

[31]  Wei Li,et al.  Ultrafast all-optical graphene modulator. , 2014, Nano letters.

[32]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[33]  L. Martín-Moreno,et al.  Analytical solution for the diffraction of an electromagnetic wave by a graphene grating , 2013, 1307.0310.

[34]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[35]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[36]  Zongfu Yu,et al.  Photonic Aharonov-Bohm effect based on dynamic modulation. , 2012, Physical review letters.

[37]  Shi-Yao Zhu,et al.  Optical diode made from a moving photonic crystal. , 2012, Physical review letters.

[38]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[39]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[40]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[41]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[42]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[43]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2008, OPTO.

[44]  N. M. R. Peres,et al.  Electronic transport in graphene : A semiclassical approach including midgap states , 2007, 0707.3004.

[45]  Andreas Amann,et al.  Dynamics of light propagation in spatiotemporal dielectric structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  J. Taylor Optical Solitons: Theory and Experiment , 2005 .

[47]  Shanhui Fan,et al.  Interband transitions in photonic crystals , 1999 .

[48]  D. Lenstra,et al.  Superluminal optical phase conjugation: Pulse reshaping and instability , 1998, physics/9803015.

[49]  E. Cassedy Waves guided by a boundary with time-space periodic modulation , 1965 .

[50]  A. A. Oliner,et al.  Dispersion relations in time-space periodic media part II—Unstable interactions , 1963 .

[51]  John R. Pierce,et al.  Traveling-Wave Tubes , 1947, Proceedings of the IRE.

[52]  S. Safavi-Naeini,et al.  Millimetre-Wave and Terahertz Amplification in a Travelling Wave Graphene Structure , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  A. Alvarez-Melcon,et al.  Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation , 2016, IEEE Antennas and Wireless Propagation Letters.

[54]  J. Pendry,et al.  Supplemental Material for: Graphene as a Tunable Anisotropic or Isotropic Plasmonic Metasurface , 2016 .

[55]  D. Efetov,et al.  A Viewpoint on: Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities , 2010 .