Tensor completion using total variation and low-rank matrix factorization

In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.

[1]  Jie Huang,et al.  Two soft-thresholding based iterative algorithms for image deblurring , 2014, Inf. Sci..

[2]  Guillermo Sapiro,et al.  Dictionary Learning for Noisy and Incomplete Hyperspectral Images , 2012, SIAM J. Imaging Sci..

[3]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Nikos Komodakis,et al.  Image Completion Using Global Optimization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[6]  Baoxin Li,et al.  Tensor completion for on-board compression of hyperspectral images , 2010, 2010 IEEE International Conference on Image Processing.

[7]  Alfred O. Hero,et al.  3D image reconstruction for a Compton SPECT camera model , 1999 .

[8]  Xuelong Li,et al.  Supervised tensor learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[9]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[10]  Nadia Kreimer,et al.  A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[13]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[14]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[15]  Wotao Yin,et al.  Parallel matrix factorization for low-rank tensor completion , 2013, ArXiv.

[16]  Xianjun Shi,et al.  A Fixed Point Iterative Method for Low $n$-Rank Tensor Pursuit , 2013, IEEE Transactions on Signal Processing.

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[19]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[20]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Michael K. Ng,et al.  Coupled segmentation and denoising/deblurring models for hyperspectral material identification , 2012, Numer. Linear Algebra Appl..

[22]  Christopher Rasmussen,et al.  Spatiotemporal Inpainting for Recovering Texture Maps of Occluded Building Facades , 2007, IEEE Transactions on Image Processing.

[23]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Xi-Le Zhao,et al.  Total Variation Structured Total Least Squares Method for Image Restoration , 2013, SIAM J. Sci. Comput..

[25]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[26]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[27]  Michael K. Ng,et al.  Deblurring and Sparse Unmixing for Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Xuelong Li,et al.  A Unified Tensor Level Set for Image Segmentation , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[30]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[32]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[33]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  András A. Benczúr,et al.  Methods for large scale SVD with missing values , 2007 .

[35]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[36]  M. Sabarimalai Manikandan,et al.  Adaptive MRI image denoising using total-variation and local noise estimation , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[37]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[38]  Xuelong Li,et al.  Bayesian tensor analysis , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[39]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[40]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[41]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[42]  Yuanyuan Liu,et al.  An Efficient Matrix Factorization Method for Tensor Completion , 2013, IEEE Signal Processing Letters.

[43]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[44]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[45]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[46]  Ting-Zhu Huang,et al.  Image restoration using total variation with overlapping group sparsity , 2013, Inf. Sci..