Matrix mineralogy of the Orgueil CI carbonaceous chondrite

A petrographic and transmission electron microscopic study of the Orgueil CI carbonaceous chondrite shows that the matrix consists mainly of Fe-bearing, Mg-rich serpentine and smectite (saponite) as well as a poorly crystallized Fe-rich material that contains minor, variable S and Ni; the Fe-rich material is probably ferrihydrite (a ferric hydroxide). The ferrihydrite occurs in small particles (<80 A in diameter), and the S and Ni are probably adsorbed on its surfaces. The serpentine and saponite occur in poorly crystallized, fine crystallites (“fine phyllosilicates”) that are intimately associated with the ferrihydrite. Coarsely crystallized phyllosilicates (“coarse phyllosilicates”) occur in clusters relatively free of ferrihydrite. The ferrihydrite is a major matrix constitutent and probably accounts for most of the Fe3+ as well as the superparamagnetic fraction in the Orgueil matrix. The textures suggest that the fine phyllosilicates resulted from alteration of the coarse phyllosilicates. The alteration probably involved a substantial amount of water and coincided with the period of sulfate vein formation. During the aqueous alteration magnetite grains, disaggregated from “framboids”, and Fe-(Ni) sulfides were replaced by ferrihydrite. Simultaneously, aqueous solutions reacted with the coarse phyllosilicates and precipitated ferrihydrite, producing intimate, pervasive mixtures with the fine phyllosilicates. The matrix mineralogy of the Orgueil chondrite suggests that Orgueil experienced considerably different alteration conditions from the CM chondrites. The mineralogical and petrological differences between CI and CM chondrites can not simply be explained as the result of different degrees of aqueous alteration.

[1]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[2]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[3]  P. Buseck,et al.  New phyllosilicate types in a carbonaceous chondrite matrix , 1979, Nature.

[4]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[5]  U. Schwertmann,et al.  Natural ferrihydrites in surface deposits from Finland and their association with silica , 1981 .

[6]  M. Zolensky,et al.  Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites , 1984, Nature.

[7]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[8]  P. Buseck,et al.  Transmission electron microscopy of the "LOW-CA" hydrated interplanetary dust particle , 1984 .

[9]  P. Buseck,et al.  A Carbonate-Rich, Hydrated, Interplanetary Dust Particle: Possible Residue from Protostellar Clouds , 1986, Science.

[10]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[11]  I. Mackinnon Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices , 1980 .

[12]  P. Buseck,et al.  Hydrated interplanetary dust particle linked with carbonaceous chondrites? , 1985, Nature.

[13]  R. Smart,et al.  The Mechanism of Sulfate Adsorption on Iron Oxides 1 , 1978 .

[14]  S. Haggerty,et al.  The alteration of olivine in basaltic and associated lavas , 1967 .

[15]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[16]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[17]  J. Kerridge Some observations on the nature of magnetite in the Orgueil meteorite , 1970 .

[18]  D. J. Barber,et al.  Fe-Ni-S-O layer phase in C2M carbonaceous chondrites—a hydrous sulphide? , 1983, Nature.

[19]  S. Haggerty,et al.  The alteration of olivine in basaltic and associated lavas , 1967 .

[20]  W. Herr,et al.  Mössbauer Spectroscopy Applied to the Classification of Stone Meteorites , 1969 .

[21]  J. Kerridge Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite , 1976 .

[22]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[23]  U. Schwertmann,et al.  Influence of Organic Anions on the Crystallization of Ferrihydrite , 1979 .

[24]  I. Mackinnon,et al.  Layer silicates in a chondritic porous interplanetary dust particle , 1985 .

[25]  M. Hyman,et al.  Magnetite in CI chondrites , 1983 .

[26]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[27]  M. Madsen,et al.  Magnetic properties of ferrihydrite , 1986 .

[28]  D. Brownlee,et al.  The Relative Frequency of Small CI Meteoroids , 1983 .

[29]  D. Brownlee,et al.  Interplanetary dust - Possible implications for comets and presolar interstellar grains , 1978 .

[30]  J. M. Knudsen,et al.  Superparamagnetic component in the Orgueil meteorite and Mössbauer spectroscopy studies in applied magnetic fields , 1986, Nature.

[31]  I. Mackinnon Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix , 1982 .

[32]  J. Kerridge MINERALOGY AND GENESIS OF THE CARBONACEOUS METEORITES. , 1968 .

[33]  A. Zaikowski Infrared spectra of the Orgueil (C-1) chondrite and serpentine minerals , 1979 .

[34]  P. Buseck,et al.  High resolution transmission electron microscopy of two stony meteorites - Murchison and Kenna , 1979 .

[35]  J. Kerridge,et al.  Early Solar System aqueous activity: Sr isotope evidence from the Orgueil CI meteorite , 1984, Nature.

[36]  J. Coey,et al.  Characterisation and magnetic properties of natural ferric gel , 1973 .

[37]  P. Buseck,et al.  A new layered mineral from the Mighei carbonaceous chondrite , 1983, Nature.

[38]  U. Schwertmann,et al.  Natural “amorphous” ferric hydroxide , 1973 .

[39]  J. Kerridge LOW‐TEMPERATURE MINERALS FROM THE FINE‐GRAINED MATRIX OF SOME CARBONACEOUS METEORITES , 1964 .

[40]  D. J. Barber Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites , 1981 .

[41]  J. Macdougall,et al.  Clues to the origin of sulfide minerals in CI chondrites , 1979 .

[42]  T. Wdowiak,et al.  Presence of a superparamagnetic component in the Orgueil meteorite , 1984, Nature.

[43]  G. Brindley,et al.  Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .

[44]  W. Meinschein,et al.  AQUEOUS, LOW TEMPERATURE ENVIRONMENT OF THE ORGUEIL METEORITE PARENT BODY , 1963, Annals of the New York Academy of Sciences.

[45]  J. Kerridge Correlation between nickel and sulfur abundances in Orgueil phyllosilicates , 1977 .

[46]  K. Bostrom,et al.  Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations , 1965 .

[47]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[48]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[49]  J. Jedwab La magnétite de la météorite d'Orgueil vue au microscope électronique à balayage , 1971 .

[50]  R. M. Cornell,et al.  Effect of Silicate Species on the Transformation of Ferrihydrite into Goethite and Hematite in Alkaline Media , 1987 .

[51]  F. Fanale,et al.  Surface properties of the Orgueil meteorite: implications for the early history of solar system volatiles , 1974 .

[52]  R. Cohen,et al.  Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .

[53]  P. Buseck,et al.  Mineralogical Evidence for Hydration and Oxidation of Fe-Rich Olivine in the Mokoia CV3 Meteorite Matrix , 1986 .

[54]  H. McSween Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .

[55]  G. Tatlock,et al.  A Mössbauer study of ferrihydrite and aluminium substituted ferrihydrites , 1986 .

[56]  M. N. Bass Montmorillonite and serpentine in Orgueil meteorite , 1971 .

[57]  H. Urey,et al.  Electron Probe Microanalysis of Organized Elements in the Orgueil Meteorite , 1963, Nature.

[58]  D. Brownlee,et al.  Cometary Particles: Thin Sectioning and Electron Beam Analysis , 1986, Science.