Optical amplification in Er3+‐doped P2O5–SiO2 planar waveguides

The small signal gain of Er3+‐doped P2O5–SiO2 planar waveguides is described with a homogeneous upconversion model. The homogeneous upconversion process accurately describes the absorption saturation at a wavelength of 0.98 μm. Interpretation of the absorption saturation provides homogeneous upconversion coefficients of 4×10−15 cm3 s−1 for a 0.54 wt % Er3+‐doped 14.6 wt % P2O5 codoped silica waveguide and 6×10−18 cm3 s−1 for a 0.46 wt % Er3+‐doped 21.6 wt % P2O5 codoped silica waveguide. The upconversion process occurs in the Er3+ ion rich phase in the P2O5–SiO2 core glass. A calculation that includes the homogeneous upconversion process proves that the gain can be enhanced by codoping the planar waveguide with P2O5. A gain of 20 dB is calculated with an Er3+ ion concentration of 0.4–0.7 wt % and a waveguide length of 40 cm when the pump power is 100 mW and 20 wt % P2O5 codoped Er3+‐doped silica‐based planar waveguides are used.

[1]  R. C. Kistler,et al.  Optical doping of waveguide materials by MeV Er implantation , 1991 .

[2]  R. R. Petrin,et al.  Concentration-dependent energy-transfer processes in Er(3+)-and Tm(3+)-doped heavy-metal fluoride glass. , 1989, Optics letters.

[3]  T. Kitagawa,et al.  Tunable Er-doped Y-branched waveguide laser , 1994, IEEE Photonics Technology Letters.

[4]  W. Sibley,et al.  Eu 2+ -sensitized Mn 2+ luminescence in RbMgF 3 :Eu,Mn , 1984 .

[5]  G. L. Vossler,et al.  Planar Er:Yb glass ion exchanged waveguide laser , 1995 .

[6]  William J. Miniscalco,et al.  Upconversion and 980-nm excited-state absorption in erbium-doped glass , 1993, Other Conferences.

[7]  Nadir Dagli,et al.  Integrated Photonics Research , 1998 .

[8]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[9]  D B Ostrowsky,et al.  Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers. , 1995, Optics letters.

[10]  E. Desurvire,et al.  Amplification of spontaneous emission in erbium-doped single-mode fibers , 1989 .

[11]  J. Fleming,et al.  Material dispersion in lightguide glasses , 1978 .

[12]  Steven T. Davey,et al.  Optical and structural investigation of Nd3+ in silica-based fibres , 1987 .

[13]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[14]  Johan Nilsson,et al.  Evaluation of parasitic upconversion mechanisms in Er/sup 3+/-doped silica-glass fibers by analysis of fluorescence at 980 nm , 1995 .

[15]  T. Kitagawa,et al.  Erbium-doped silica-based planar waveguide amplifier pumped by 0.98 mu m laser diodes , 1993 .

[16]  Morio Kobayashi,et al.  Guided-wave laser based on erbium-doped silica planar lightwave circuit , 1991 .

[17]  F. W. Ostermayer,et al.  Frequency Upconversion in YF3:Yb3+,Tm3+ , 1971 .

[18]  Elias Snitzer,et al.  Fabrication of high-concentration rare-earth doped optical fibers using chelates , 1990 .

[19]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[20]  T. Kitagawa,et al.  Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD , 1993 .

[21]  M. Nakazawa,et al.  Electron-beam vapour-deposited erbium-doped glass waveguide laser at 1.53 mu m , 1992 .

[22]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[23]  T. Kitagawa,et al.  Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler , 1994 .

[24]  M. Monerie,et al.  Modeling of pair-induced quenching in erbium-doped silicate fibers , 1993 .

[25]  B. Jaskorzynska,et al.  Concentration-dependent upconversion in Er/sup 3+/-doped fiber amplifiers: Experiments and modeling , 1991, IEEE Photonics Technology Letters.

[26]  J. Wang,et al.  Erbium-doped ion-exchanged waveguide lasers in BK-7 glass , 1992, IEEE Photonics Technology Letters.

[27]  Hidehiko Takara,et al.  Actively modelocked ring laser using Er-doped silica-based planar waveguide amplifier , 1995 .

[28]  H J Shaw,et al.  Effects of concentration and clusters in erbium-doped fiber lasers. , 1993, Optics letters.

[29]  T. Kitagawa,et al.  Neodymium-doped silica optical waveguide laser on silicon substrate , 1989, IEEE Photonics Technology Letters.

[30]  Renata Reisfeld,et al.  Lasers and Excited States of Rare Earths , 1977 .