Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties

This paper discusses a new structural optimization method, based on topology optimization techniques, using frame elements where the cross-sectional properties can be treated as design variables. For each of the frame elements, the rotational angle denoting the principal direction of the second moment of inertia is included as a design variable, and a procedure to obtain the optimal angle is derived from Karush–Kuhn–Tucker (KKT) conditions and a complementary strain energy-based approach. Based on the above, the optimal rotational angle of each frame element is obtained as a function of the balance of the internal moments. The above methodologies are applied to problems of minimizing the mean compliance and maximizing the eigen frequencies. Several examples are provided to show the utility of the presented methodology.

[1]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[2]  Dmitri Tcherniak,et al.  Topology optimization of resonating structures using SIMP method , 2002 .

[3]  M. Bendsøe,et al.  Shape optimization of structures for multiple loading conditions using a homogenization method , 1992 .

[4]  Anders Klarbring,et al.  Topology optimization of frame structures with flexible joints , 2003 .

[5]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[6]  P. Pedersen On optimal orientation of orthotropic materials , 1989 .

[7]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[8]  M. M. Neves,et al.  Generalized topology design of structures with a buckling load criterion , 1995 .

[9]  Masataka Yoshimura,et al.  Structural optimization using function-oriented elements to support conceptual designs , 2006 .

[10]  Uri Kirsch,et al.  Optimal Topologies of Structures , 1989 .

[11]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[12]  Noboru Kikuchi,et al.  First Order Analysis - New CAE Tools for Automotive Body Designers , 2001 .

[13]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[14]  L. Gil,et al.  Shape and cross-section optimisation of a truss structure , 2001 .

[15]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[16]  Masataka Yoshimura,et al.  A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames , 2005 .

[17]  Masataka Yoshimura,et al.  Concurrent Design and Evaluation Based on Structural Optimization using Structural and Function-oriented Elements at the Conceptual Design Phase , 2005, Concurr. Eng. Res. Appl..

[18]  Claus B. W. Pedersen,et al.  Crashworthiness design of transient frame structures using topology optimization , 2004 .

[19]  Niels Leergaard Pedersen,et al.  Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling , 2003 .

[20]  Pauli Pedersen,et al.  On sufficiency conditions for optimal design based on extremum principles of mechanics , 1997 .

[21]  Zheng-Dong Ma,et al.  An improved approach for determining the optimal orientation of orthotropic material , 1994 .

[22]  H. Gea,et al.  Optimal orientation of orthotropic materials using an energy based method , 1998 .

[23]  M. S. Hayalioglu,et al.  Optimum design of geometrically nonlinear elastic-plastic steel frames , 1991 .

[24]  Harald Fredricson,et al.  Topology optimization of frame structures—joint penalty and material selection , 2005 .

[25]  N. L. Pedersen Maximization of eigenvalues using topology optimization , 2000 .

[26]  T. M. Cameron,et al.  Optimization of frame structures with flexible joints , 2000 .

[27]  Shinji Nishiwaki,et al.  Topological design considering flexibility under periodic loads , 2000 .

[28]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[29]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[30]  D. E. Grierson,et al.  A General Formulation of the Optimal Frame Problem , 1970 .

[31]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[32]  H. Gea,et al.  A systematic topology optimization approach for optimal stiffener design , 1998 .

[33]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[34]  H. C. Gea,et al.  On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials , 2004 .

[35]  Ren-Jye Yang,et al.  Automotive applications of topology optimization , 1995 .

[36]  P. Pedersen Bounds on elastic energy in solids of orthotropic materials , 1990 .

[37]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .