Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs

MicroRNAs (miRNAs) comprise 1 to 3% of all vertebrate genes, but their in vivo functions and mechanisms of action remain largely unknown. Zebrafish miR-430 is expressed at the onset of zygotic transcription and regulates morphogenesis during early development. By using a microarray approach and in vivo target validation, we find that miR-430 directly regulates several hundred target messenger RNA molecules (mRNAs). Most targets are maternally expressed mRNAs that accumulate in the absence of miR-430. We also show that miR-430 accelerates the deadenylation of target mRNAs. These results suggest that miR-430 facilitates the deadenylation and clearance of maternal mRNAs during early embryogenesis.

[1]  M. Kirschner,et al.  A major developmental transition in early xenopus embryos: II. control of the onset of transcription , 1982, Cell.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  AC Tose Cell , 1993, Cell.

[4]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[5]  A. V. Grimstone,et al.  Cell science , 1994, Nature.

[6]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[7]  Joel D. Richter,et al.  Cytoplasmic Polyadenylation in Development and Beyond , 1999, Microbiology and Molecular Biology Reviews.

[8]  W. Richards,et al.  Assaying the polyadenylation state of mRNAs. , 1999, Methods.

[9]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[10]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[11]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[12]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[13]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[14]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[15]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[16]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[17]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[18]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[19]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[20]  Mark Gerstein,et al.  The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. , 2005, Developmental cell.

[21]  Z. Gong,et al.  Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays , 2005, PLoS genetics.

[22]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[23]  Michael T. McManus,et al.  The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[25]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[26]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[27]  R. Pillai MicroRNA function: multiple mechanisms for a tiny RNA? , 2005, RNA.

[28]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[29]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[30]  Min Han,et al.  The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. , 2005, Molecular cell.

[31]  Apoptosis: eating sensibly , 2005 .

[32]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[33]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[34]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[35]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[36]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[37]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[38]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[39]  H. Meijer,et al.  Mechanisms of translational control by the 3' UTR in development and differentiation. , 2005, Seminars in cell & developmental biology.

[40]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[41]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[42]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[43]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[44]  J. Steitz,et al.  Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. , 2006, Genes & development.