DNA nanostructures in vitro, in vivo and on membranes

Abstract Recent developments in DNA nanotechnology brought rich structural and functional diversity. However, for DNA nanostructures to perform in a biologically relevant context, obstacles such as nuclease activity and low divalent ion concentrations have to be addressed. For drug delivery or gene therapy applications, ultimately the lipid membrane barriers must be targeted and overcome. In this article, we highlight efforts and achievements in enhancing the stability of DNA nanostructures including chemical modifications, covalent crosslinking and coating with protective layers composed of polymers or lipids. We then review interactions between DNA nanostructures and lipid membranes, which are often mediated by ligands for membrane receptors or hydrophobic domains incorporated into the structure. Finally, we present applications of DNA nanostructures on and in lipid membranes, including higher order assembly, controlling membrane curvature, targeting and arranging membrane proteins in living cells and DNA-based synthetic lipid channels.

[1]  J. Reif,et al.  Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Smith,et al.  The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. , 1997, Immunity.

[3]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[4]  T. Südhof,et al.  Synaptobrevin is essential for fast synaptic-vesicle endocytosis , 2004, Nature Cell Biology.

[5]  Dongsheng Liu,et al.  A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale. , 2016, Nanoscale.

[6]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[7]  R. Gajić,et al.  Enhanced structural stability of DNA origami nanostructures by graphene encapsulation , 2016 .

[8]  Thomas H. LaBean,et al.  Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. , 2017, ACS nano.

[9]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[10]  Hao Yan,et al.  Cuboid Vesicles Formed by Frame-Guided Assembly on DNA Origami Scaffolds. , 2017, Angewandte Chemie.

[11]  Veikko Linko,et al.  On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers. , 2018, Angewandte Chemie.

[12]  Y. Mori,et al.  DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels. , 2018, Angewandte Chemie.

[13]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.

[14]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[15]  G. Brezesinski,et al.  DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[16]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[17]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[18]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[19]  S. Howorka,et al.  Membrane-Spanning DNA Nanopores with Cytotoxic Effect , 2014, Angewandte Chemie.

[20]  Satoshi Murata,et al.  Environment‐Dependent Self‐Assembly of DNA Origami Lattices on Phase‐Separated Lipid Membranes , 2018 .

[21]  Petra Schwille,et al.  Switchable domain partitioning and diffusion of DNA origami rods on membranes. , 2013, Faraday discussions.

[22]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[23]  Veikko Linko,et al.  DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. , 2015, Trends in biotechnology.

[24]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.

[25]  Masayuki Endo,et al.  Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. , 2011, Journal of the American Chemical Society.

[26]  Stefan Howorka,et al.  Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State , 2014, ACS nano.

[27]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[28]  Jejoong Yoo,et al.  Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field. , 2015, ACS nano.

[29]  A. Herrmann,et al.  Modular delivery of CpG-incorporated lipid-DNA nanoparticles for spleen DC activation. , 2017, Biomaterials.

[30]  H. Sleiman,et al.  DNA nanostructure serum stability: greater than the sum of its parts. , 2013, Chemical communications.

[31]  Tim Liedl,et al.  DNA-Tile Structures Induce Ionic Currents through Lipid Membranes. , 2015, Nano letters.

[32]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[33]  Carlos E. Castro,et al.  Engineering Cell Surface Function with DNA Origami , 2017, Advanced materials.

[34]  Georg Krainer,et al.  Cation-Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride. , 2017, Small.

[35]  Tim Liedl,et al.  Multiplexed ionic current sensing with glass nanopores. , 2013, Lab on a chip.

[36]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[37]  W. Fiers,et al.  Dual Signaling of the Fas Receptor: Initiation of Both Apoptotic and Necrotic Cell Death Pathways , 1998, The Journal of experimental medicine.

[38]  S. McLaughlin,et al.  Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. , 2008, Molecular biology of the cell.

[39]  Jing Wang,et al.  A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. , 2016, Journal of the American Chemical Society.

[40]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[41]  Yonggang Ke,et al.  Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. , 2012, Chemical science.

[42]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[43]  Y. Takakura,et al.  Enhanced immunostimulatory activity of oligodeoxynucleotides by Y‐shape formation , 2008, Immunology.

[44]  Weihong Tan,et al.  Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. , 2013, Journal of the American Chemical Society.

[45]  S. Howorka,et al.  A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. , 2016, Nature nanotechnology.

[46]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[47]  Petra Schwille,et al.  DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions. , 2015, Nano letters.

[48]  Zhao Zhang,et al.  Placing and shaping liposomes with reconfigurable DNA nanocages. , 2017, Nature chemistry.

[49]  R. Franklin,et al.  Molecular Configuration in Sodium Thymonucleate , 1953, Nature.

[50]  S. Boxer,et al.  Individual vesicle fusion events mediated by lipid-anchored DNA. , 2013, Biophysical journal.

[51]  P. Paukstelis,et al.  Enhancing DNA Crystal Durability through Chemical Crosslinking , 2016, Chembiochem : a European journal of chemical biology.

[52]  Jens Bauer,et al.  Multiscale Origami Structures as Interface for Cells. , 2015, Angewandte Chemie.

[53]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[54]  S. Howorka,et al.  Self-assembled DNA nanopores that span lipid bilayers. , 2013, Nano letters.

[55]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[56]  D. Luo,et al.  Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. , 2013, Angewandte Chemie.

[57]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[58]  T. Vanderlick,et al.  Partitioning of membrane-anchored DNA between coexisting lipid phases. , 2009, The journal of physical chemistry. B.

[59]  A. Benda,et al.  Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[60]  Hendrik Dietz,et al.  Sequence-programmable covalent bonding of designed DNA assemblies , 2018, Science Advances.

[61]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[62]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[63]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[64]  Jeunghoon Lee,et al.  DNA topology influences molecular machine lifetime in human serum , 2015, Nanoscale.

[65]  S. Howorka,et al.  Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials , 2018, Nature Communications.

[66]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[67]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[68]  T. Vanderlick,et al.  Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. , 2007, The journal of physical chemistry. A.

[69]  A. Herrmann,et al.  Lipid membranes carrying lipophilic cholesterol-based oligonucleotides--characterization and application on layer-by-layer coated particles. , 2009, The journal of physical chemistry. B.

[70]  Sampo Tuukkanen,et al.  One-step large-scale deposition of salt-free DNA origami nanostructures , 2015, Scientific Reports.

[71]  R. Yuan,et al.  Multicolor-Encoded Reconfigurable DNA Nanostructures Enable Multiplexed Sensing of Intracellular MicroRNAs in Living Cells. , 2016, ACS Applied Materials and Interfaces.

[72]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[73]  M. Loi,et al.  Light-Triggered Sequence-Specific Cargo Release from DNA Block Copolymer-Lipid Vesicles , 2012, Angewandte Chemie.

[74]  R. de Vries,et al.  Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. , 2017, ACS nano.

[75]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[76]  U. Keyser,et al.  Ion Channels Made from a Single Membrane-Spanning DNA Duplex , 2016, Nano letters.

[77]  M. I. Setyawati,et al.  Protecting microRNAs from RNase degradation with steric DNA nanostructures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01829g Click here for additional data file. , 2016, Chemical science.

[78]  Jeffrey L. Wrana,et al.  Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling , 2005, Nature Reviews Molecular Cell Biology.

[79]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[80]  W. Olson,et al.  3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. , 2003, Nucleic acids research.

[81]  Georg Krainer,et al.  Structural stability of DNA origami nanostructures in the presence of chaotropic agents. , 2016, Nanoscale.

[82]  W. Shih,et al.  Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron. , 2017, Methods in molecular biology.

[83]  Liangfang Zhang,et al.  DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy. , 2016, Small.

[84]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[85]  Friedrich C Simmel,et al.  Hydrophobic actuation of a DNA origami bilayer structure. , 2014, Angewandte Chemie.

[86]  Tomoki Shiomi,et al.  Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. , 2012, ACS nano.

[87]  H. W. Lam,et al.  Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations , 2014, Angewandte Chemie.

[88]  Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. , 2016, Chemical communications.

[89]  T. Stevens,et al.  Do more complex organisms have a greater proportion of membrane proteins in their genomes? , 2000, Proteins.

[90]  Joachim O. Rädler,et al.  Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. , 2016, Nano letters.

[91]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[92]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[93]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[94]  Hao Yan,et al.  DNA-cholesterol barges as programmable membrane-exploring agents. , 2014, ACS nano.

[95]  L G Griffith,et al.  Cell adhesion and motility depend on nanoscale RGD clustering. , 2000, Journal of cell science.

[96]  K. Fujimoto,et al.  Creation of DNA array structure equipped with heat resistance by ultrafast photocrosslinking , 2014 .

[97]  S. Akira,et al.  Toll-like receptors. , 2003, Annual review of immunology.

[98]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[99]  C. Dohno,et al.  Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: the effect on mechanical properties. , 2017, Nanoscale.

[100]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[101]  P. Schwille,et al.  Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes , 2016 .

[102]  Vinit Kumar,et al.  DNA Nanotechnology for Cancer Therapy , 2016, Theranostics.

[103]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[104]  Johann Knechtel,et al.  DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels , 2017, Nucleic acids research.

[105]  U. Keyser,et al.  A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes , 2018, Nature Communications.

[106]  Björn Högberg,et al.  Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides , 2013, Nature Methods.

[107]  S. Boxer,et al.  Vesicle fusion observed by content transfer across a tethered lipid bilayer. , 2011, Biophysical journal.

[108]  D. Luo,et al.  The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. , 2009, Biomaterials.

[109]  F. Höök,et al.  Determinants for membrane fusion induced by cholesterol-modified DNA zippers. , 2008, The journal of physical chemistry. B.

[110]  R. Holliday THE INDUCTION OF MITOTIC RECOMBINATION BY MITOMYCIN C IN USTILAGO AND SACCHAROMYCES. , 1964, Genetics.

[111]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[112]  Weian Zhao,et al.  DNA‐Scaffolded Multivalent Ligands to Modulate Cell Function , 2014, Chembiochem : a European journal of chemical biology.

[113]  S. Howorka,et al.  Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy. , 2018, ACS nano.

[114]  H. Sleiman,et al.  Long-Range Ordering of Blunt-Ended DNA Tiles on Supported Lipid Bilayers. , 2017, Journal of the American Chemical Society.

[115]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[116]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores for controlling DNA translocation. , 2013, ACS nano.

[117]  C Russell Middaugh,et al.  Barriers to nonviral gene delivery. , 2003, Journal of pharmaceutical sciences.

[118]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[119]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[120]  S. Stupp,et al.  Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells Into Neurons , 2014, Nano letters.

[121]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[122]  A. Urtti,et al.  Oligonucleotide-cationic liposome interactions. A physicochemical study. , 1994, Biochimica et biophysica acta.

[123]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[124]  P. Schwille,et al.  Membrane sculpting by curved DNA origami scaffolds , 2018, Nature Communications.

[125]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[126]  F. Höök,et al.  Bivalent cholesterol-based coupling of oligonucletides to lipid membrane assemblies. , 2004, Journal of the American Chemical Society.

[127]  Raphael Zahn,et al.  DNA-induced programmable fusion of phospholipid vesicles. , 2007, Journal of the American Chemical Society.

[128]  Hao Yan,et al.  Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures , 2009, DNA.

[129]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[130]  David A Rusling,et al.  Triplex-directed covalent cross-linking of a DNA nanostructure. , 2012, Chemical communications.

[131]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[132]  Tim Liedl,et al.  One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. , 2015, Angewandte Chemie.

[133]  S. Howorka,et al.  Biomimetic Hybrid Nanocontainers with Selective Permeability , 2016, Angewandte Chemie.

[134]  H. Sleiman,et al.  Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers. , 2014, Journal of the American Chemical Society.

[135]  K. Jacobson,et al.  Lateral diffusion of lipids and proteins in bilayer membranes , 1984 .

[136]  Petra Schwille,et al.  Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. , 2015, Angewandte Chemie.

[137]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[138]  S. Akira,et al.  Toll‐Like Receptors , 2007, Current protocols in immunology.

[139]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[140]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[141]  R. London,et al.  A fluorescent indicator for measuring cytosolic free magnesium. , 1989, The American journal of physiology.

[142]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[143]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[144]  Zhao Zhang,et al.  Vesicle Tubulation with Self-Assembling DNA Nanosprings. , 2018, Angewandte Chemie.

[145]  Jiye Shi,et al.  Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. , 2014, Angewandte Chemie.

[146]  Bryan Wei,et al.  UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation , 2009, Nucleic acids research.

[147]  Michael Matthies,et al.  Block Copolymer Micellization as a Protection Strategy for DNA Origami. , 2017, Angewandte Chemie.

[148]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[149]  N. Seeman DNA in a material world , 2003, Nature.

[150]  B. Nordén,et al.  A new modular approach to nanoassembly: stable and addressable DNA nanoconstructs via orthogonal click chemistries. , 2012, ACS Nano.

[151]  Tim Liedl,et al.  Cellular Uptake of Tile-Assembled DNA Nanotubes , 2014, Nanomaterials.

[152]  H. Sleiman,et al.  Development and characterization of gene silencing DNA cages. , 2014, Biomacromolecules.

[153]  S. May,et al.  Binding of DNA to zwitterionic lipid layers mediated by divalent cations. , 2009, The journal of physical chemistry. B.

[154]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[155]  Yangyang Yang,et al.  Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. , 2014, Journal of the American Chemical Society.

[156]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[157]  Jejoong Yoo,et al.  Large-Conductance Transmembrane Porin Made from DNA Origami , 2016, ACS nano.

[158]  A. Herrmann,et al.  Lipid-anchored oligonucleotides for stable double-helix formation in distinct membrane domains. , 2006, Angewandte Chemie.

[159]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[160]  F. Szoka,et al.  Comparative properties and methods of preparation of lipid vesicles (liposomes). , 1980, Annual review of biophysics and bioengineering.

[161]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[162]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[163]  Friedrich C Simmel,et al.  Molecular transport through large-diameter DNA nanopores , 2016, Nature Communications.

[164]  Petra Schwille,et al.  Fluorescence correlation spectroscopy relates rafts in model and native membranes. , 2004, Biophysical journal.

[165]  Yasaman Ahmadi,et al.  (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. , 2018, Nanoscale.

[166]  Jing Wang,et al.  Self-assembly of size-controlled liposomes on DNA nanotemplates , 2016, Nature chemistry.

[167]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[168]  P. Dimroth,et al.  Essentials for ATP synthesis by F1F0 ATP synthases. , 2009, Annual review of biochemistry.

[169]  H. Sugiyama,et al.  Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures , 2015, Nature Communications.

[170]  H. Sugiyama,et al.  Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking. , 2018, Angewandte Chemie.

[171]  Yudong Huang,et al.  Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy , 2015, Nano Research.

[172]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[173]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[174]  A. Aksimentiev,et al.  Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating. , 2015, The journal of physical chemistry letters.

[175]  K. Gothelf,et al.  Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles. , 2016 .