Quantum resources for hybrid communication via qubit-oscillator states

We investigate a family of qubit-oscillator states as resources for hybrid quantum communication. They result from a mechanism of qubit-controlled displacement on the oscillator. For large displacements, we obtain analytical formulas for entanglement and other nonclassical correlations, such as entropic and geometric discord, in those states. We design two protocols for quantum communication using the considered resource states: a hybrid teleportation and a hybrid remote-state preparation. The latter, in its standard formulation, is shown to have a performance limited by the initial mixedness of the oscillator, echoing the behavior of the geometric discord. If one includes a further optimization over nonunitary correcting operations performed by the receiver, the performance is improved to match that of teleportation, which is directly linked to the amount of entanglement. Both protocols can then approach perfect efficiency even if the oscillator is originally highly thermal. We discuss the critical implications of these findings for the interpretation of general quantum correlations.

[1]  Controllable Coupling between Flux Qubit and Nanomechanical Resonator , 2006, cond-mat/0607180.

[2]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[3]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[4]  Petr Marek,et al.  Elementary gates for quantum information with superposed coherent states , 2010, 1006.3644.

[5]  Subsystem purity as an enforcer of entanglement. , 2001, Physical review letters.

[6]  T. Tufarelli Qubit-controlled displacements in Markovian environments , 2012, 1209.1837.

[7]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[8]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[9]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[10]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[11]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[12]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[13]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  Norbert Lutkenhaus,et al.  Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure , 2006 .

[16]  F. Verstraete,et al.  Optimal teleportation with a mixed state of two qubits. , 2003, Physical review letters.

[17]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[18]  Sevag Gharibian Quantifying nonclassicality with local unitary operations , 2012 .

[19]  Gerardo Adesso,et al.  Quantumness of correlations revealed in local measurements exceeds entanglement , 2012 .

[20]  Nicolas Gisin,et al.  Entanglement and non-locality are different resources , 2004, quant-ph/0412109.

[21]  Omar E. Gamel,et al.  Time-averaged quantum dynamics and the validity of the effective Hamiltonian model , 2010, 1007.1789.

[22]  Davide Girolami,et al.  Interplay between computable measures of entanglement and other quantum correlations , 2011, 1111.3643.

[23]  Jaromir Fiurasek Improving the fidelity of continuous-variable teleportation via local operations , 2002 .

[24]  G. Adesso,et al.  Quantum discord for general two-qubit states: Analytical progress , 2011, 1103.3189.

[25]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[26]  M. Doucha,et al.  Quantum dynamics of a two-level system coupled to a bosonic degree of freedom in terms of Wigner phase space distributions , 1986 .

[27]  Davide Girolami,et al.  Measurement-induced disturbances and nonclassical correlations of Gaussian states , 2010, 1012.4302.

[28]  Marco Piani,et al.  Problem with geometric discord , 2012, 1206.0231.

[29]  Chang-shui Yu,et al.  Direct scheme for measuring the geometric quantum discord , 2011, 1110.5693.

[30]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[31]  R. Laflamme,et al.  Measuring geometric quantum discord using one bit of quantum information , 2012 .

[32]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[33]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[34]  C. Macchiavello,et al.  Optimal state estimation for d-dimensional quantum systems☆ , 1998, quant-ph/9812016.

[35]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[36]  Entangling pairs of nano-cantilevers, Cooper-pair boxes and mesoscopic teleportation , 2005, cond-mat/0510676.

[37]  M. Barbieri,et al.  Characterization of a π-phase shift quantum gate for coherent-state qubits , 2012 .

[38]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[39]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[40]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[41]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[42]  Hermann Kampermann,et al.  Quantum cost for sending entanglement. , 2012, Physical review letters.

[43]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[44]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[45]  M. Ozawa Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.

[46]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[47]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[48]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[49]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[50]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[51]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[52]  F. Illuminati,et al.  Entanglement quantification by local unitary operations , 2011, 1104.0941.

[53]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[54]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[55]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[56]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[57]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[58]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[59]  M. Paternostro,et al.  Non-Markovian effects on the nonlocality of a qubit-oscillator system , 2011, 1109.0133.

[60]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[61]  M Paternostro,et al.  Quantum discord bounds the amount of distributed entanglement. , 2012, Physical review letters.

[62]  P. Loock,et al.  Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement , 2011, 1111.0478.

[63]  Akira Furusawa,et al.  Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing , 2011 .

[64]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[65]  Jinhyoung Lee,et al.  Partial teleportation of entanglement in a noisy environment , 2000, quant-ph/0003060.

[66]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[67]  Alessandro Ferraro,et al.  Reconstructing the quantum state of oscillator networks with a single qubit , 2011, 1109.2022.

[68]  Davide Girolami,et al.  Observable measure of bipartite quantum correlations. , 2011, Physical review letters.

[69]  Z. Merali Quantum computing: The power of discord , 2011, Nature.

[70]  GAUSSIAN GEOMETRIC DISCORD , 2011, 1110.2532.

[71]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[72]  A. R. P. Rau,et al.  Quantum discord for qubit–qudit systems , 2012 .

[73]  Rafael Chaves,et al.  Noisy One-Way Quantum Computations: The Role of Correlations , 2010, 1007.2165.

[74]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.