Biodegradation of a magnesium alloy implant in the intercondylar femoral notch showed an appropriate response to the synovial membrane in a rabbit model in vivo

Degradable magnesium alloys are promising biomaterials for orthopedic applications. The aim of this study was to evaluate the potential effects on both the synovial membrane (synovialis) and the synovial fluid (synovia) of the degradation products of a MgYREZr-pin implanted in the intercondylar femoral notch in a rabbit model. Thirty-six animals were randomized into two groups (MgYREZr or Ti6Al4V alloy) of 18 animals each. Each group was then divided into three subgroups with implantation periods of 1, 4, and 12 weeks, with six animals in each subgroup. The initial inflammatory reaction caused by the surgical trauma declined after 12 weeks of implantation, and elucidated a progressive recovery of the synovial membrane. Compared with control Ti6Al4V pins, there were no significant differences between the groups. However, after 12 weeks, recovery of the synovial membrane was more advanced in the titanium group, in which 92% showed no signs of synovitis, than in the magnesium group. A cytotoxicity test with L929 cells and human osteoblasts (HOB) was also conducted, according to EN ISO 10993-5/12, and no toxic leachable products were observed after 24 h of incubation. In conclusion, the MgYREZr alloy seems to be a suitable material for intra-articular degradable implants.

[1]  V. Neubert,et al.  In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months , 2014, Journal of biomaterials applications.

[2]  W. Tillmann,et al.  Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. , 2013, Acta biomaterialia.

[3]  Karl Ulrich Kainer,et al.  Element distribution in the corrosion layer and cytotoxicity of alloy Mg-10Dy during in vitro biodegradation. , 2013, Acta biomaterialia.

[4]  J. Nellesen,et al.  In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. , 2013, Acta biomaterialia.

[5]  Ivonne Bartsch,et al.  Fast escape of hydrogen from gas cavities around corroding magnesium implants. , 2013, Acta biomaterialia.

[6]  Henning Windhagen,et al.  Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study , 2013, BioMedical Engineering OnLine.

[7]  C. Frank,et al.  New surgical model of post‐traumatic osteoarthritis: Isolated intra‐articular bone injury in the rabbit , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[8]  J. Oliveira,et al.  Migration of “bioabsorbable” screws in ACL repair. How much do we know? A systematic review , 2013, Knee Surgery, Sports Traumatology, Arthroscopy.

[9]  P. Uggowitzer,et al.  In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. , 2013, Acta biomaterialia.

[10]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[11]  A. McGoron,et al.  Biodegradable Magnesium Alloys: A Review of Material Development and Applications , 2012, Journal of biomimetics, biomaterials, and tissue engineering.

[12]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[13]  D. Veale,et al.  Macrophages in Synovial Inflammation , 2011, Front. Immun..

[14]  Henning Windhagen,et al.  In Vivo Corrosion of Two Novel Magnesium Alloys ZEK100 and AX30 and Their Mechanical Suitability as Biodegradable Implants , 2011, Materials.

[15]  Steven B Cohen,et al.  A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. , 2011, The Journal of bone and joint surgery. American volume.

[16]  S. Stanzl-Tschegg,et al.  Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. , 2011, Acta biomaterialia.

[17]  Andrea Meyer-Lindenberg,et al.  Profound differences in the in‐vivo‐degradation and biocompatibility of two very similar rare‐earth containing Mg‐alloys in a rabbit model , 2010 .

[18]  M. Störmer,et al.  Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. , 2010, Acta biomaterialia.

[19]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[20]  Janine Fischer,et al.  Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. , 2010, Acta biomaterialia.

[21]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[22]  L. Filgueira,et al.  Titanium IV ions induced human osteoclast differentiation and enhanced bone resorption in vitro. , 2009, Journal of biomedical materials research. Part A.

[23]  Ke Yang,et al.  In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. , 2009, Journal of biomedical materials research. Part A.

[24]  S. Konan,et al.  A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. , 2009, The Knee.

[25]  J. Jacobs,et al.  Biologic effects of implant debris. , 2009, Bulletin of the NYU hospital for joint diseases.

[26]  F. Haddad,et al.  The unpredictable material properties of bioabsorbable PLC interference screws and their adverse effects in ACL reconstruction surgery , 2009, Knee Surgery, Sports Traumatology, Arthroscopy.

[27]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[28]  F. Witte,et al.  Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. , 2008, Journal of biomedical materials research. Part A.

[29]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[30]  M. G. Krukemeyer,et al.  [Diagnostic spectrum of synovitis]. , 2008, Zeitschrift fur Rheumatologie.

[31]  M. G. Krukemeyer,et al.  Das differenzialdiagnostische Spektrum der Synovialitis , 2008, Zeitschrift für Rheumatologie.

[32]  M. Thomsen,et al.  Orthopädisch-chirurgische Implantate und Allergien , 2007, Der Orthopäde.

[33]  G. Burmester,et al.  Synovitis score: discrimination between chronic low‐grade and high‐grade synovitis , 2006, Histopathology.

[34]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[35]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[36]  M. Baums,et al.  Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction , 2006, Knee Surgery, Sports Traumatology, Arthroscopy.

[37]  F. Krappel,et al.  The migration of a BioScrew® as a differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases , 2006, Archives of Orthopaedic and Trauma Surgery.

[38]  V. Krenn,et al.  Synovialitis-Score: Histopathologisches Graduierungsschema rheumatischer und nicht-rheumatischer Synovialitiden , 2005, Zeitschrift für Rheumatologie.

[39]  G. Burmester,et al.  [Synovialitis score: histopathological grading system for chronic rheumatic and non-rheumatic synovialitis]. , 2005, Zeitschrift fur Rheumatologie.

[40]  M. Maguire,et al.  Magnesium chemistry and biochemistry , 2002, Biometals.

[41]  F. Wittea,et al.  In vivo corrosion of four magnesium alloys and the associated bone response , 2004 .

[42]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.

[43]  P. Simonian,et al.  Broken poly-L-lactic acid interference screw after ligament reconstruction. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[44]  T. Iwanaga,et al.  Three-dimensional ultrastructure of synoviocytes in the knee joint of rabbits and morphological changes in osteoarthritis model. , 2002, Archives of histology and cytology.

[45]  I Petersen,et al.  Grading of chronic synovitis--a histopathological grading system for molecular and diagnostic pathology. , 2002, Pathology, research and practice.

[46]  N. Hallab Metal sensitivity in patients with orthopedic implants. , 2001, Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases.

[47]  A. Hartwig,et al.  Role of magnesium in genomic stability. , 2001, Mutation research.

[48]  L. Claes,et al.  Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. , 2001, Journal of biomedical materials research.

[49]  A. Werner,et al.  Secondary intra-articular dislocation of a broken bioabsorbable interference screw after anterior cruciate ligament reconstruction , 2001, Knee Surgery, Sports Traumatology, Arthroscopy.

[50]  H. Kang,et al.  Effects of Conventional and New Peritoneal Dialysis Solutions on Human Peritoneal Mesothelial Cell Viability and Proliferation , 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[51]  O. Pohler,et al.  Unalloyed titanium for implants in bone surgery. , 2000, Injury.

[52]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[53]  W. Fawcett,et al.  Magnesium: Physiology and Pharmacology , 2000 .

[54]  O. Böstman,et al.  Adverse Tissue Reactions to Bioabsorbable Fixation Devices , 2000, Clinical orthopaedics and related research.

[55]  R. Siebold,et al.  A new bicortical tibial fixation technique in anterior cruciate ligament reconstruction with quadruple hamstring graft , 2000, Knee Surgery, Sports Traumatology, Arthroscopy.

[56]  Kathleen K. Kaysinger,et al.  Extracellular pH modulates the activity of cultured human osteoblasts , 1998, Journal of cellular biochemistry.

[57]  C. Krettek,et al.  Local foreign-body reactions to biodegradable implants A classification system , 1997, Der Unfallchirurg.

[58]  W. D. Hovis,et al.  Polyglycolide Bioabsorbable Screws in the Treatment of Ankle Fractures , 1997, Foot & ankle international.

[59]  S. Hirano,et al.  Exposure, metabolism, and toxicity of rare earths and related compounds. , 1996, Environmental health perspectives.

[60]  L. Lavery,et al.  Risk of complications of first metatarsal head osteotomies with biodegradable pin fixation: Biofix versus Orthosorb. , 1994, The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons.

[61]  R. Svendsen,et al.  Synovitis of the knee after intraarticular fracture fixation with Biofix. Report of two cases. , 1992, Acta orthopaedica Scandinavica.

[62]  C. Beck,et al.  The GORE-TEX anterior cruciate ligament prosthesis , 1992, The American journal of sports medicine.

[63]  W. Klein,et al.  Synovitis and artificial ligaments. , 1992, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[64]  U. Rydholm,et al.  Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. , 1992, Acta orthopaedica Scandinavica.

[65]  J. Richmond,et al.  A multicenter study on the results of anterior cruciate ligament reconstruction using a Dacron ligament prosthesis in "salvage" cases , 1989, The American journal of sports medicine.

[66]  B. Henderson,et al.  The synovial lining cell: biology and pathobiology. , 1985, Seminars in arthritis and rheumatism.