A triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions

In this paper, the process by which geometrical and structural matrices of plate finite elements employing absolute nodal coordinate formulation (ANCF) are constructed is studied. The kinematic and topological properties of an arbitrary plate finite element are described using universal digital code dncm that provides systematic enumeration of finite elements. This code is formed using the element’s dimension d, the number of nodes it possesses n, the number of scalar coordinates per node c, and a multiplier describing the process of transforming a conventional finite element to an ANCF element m. The detailed generation of a new type of triangular plate finite element 2343 using numerical computation of shape functions is also discussed in the paper. The new triangular element employs position vectors and slope vectors up to second-order mixed-derivative slope vector. A detailed derivation of the equations of motion of the element is also provided and examples of its numerical simulation and validation presented.

[1]  A. Mikkola,et al.  A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation , 2009 .

[2]  Ahmed A. Shabana,et al.  Nonlinear dynamics of three-dimensional belt drives using the finite-element method , 2007 .

[3]  Gerald Wempner,et al.  Behavior of Materials , 2002 .

[4]  A. Mikkola,et al.  Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .

[5]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[6]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[7]  Bernhard Specht,et al.  Modified shape functions for the three‐node plate bending element passing the patch test , 1988 .

[8]  Hui,et al.  A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .

[9]  A. Shabana,et al.  A new plate element based on the absolute nodal coordinate formulation , 2001 .

[10]  Ahmed A. Shabana,et al.  A new nonlinear multibody/finite element formulation for knee joint ligaments , 2010 .

[11]  Arend L. Schwab,et al.  Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation , 2010 .

[12]  Ahmed A. Shabana,et al.  Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation , 2005 .

[13]  A. Mikkola,et al.  A geometrically exact beam element based on the absolute nodal coordinate formulation , 2008 .

[14]  Mohamed A. Omar,et al.  A TWO-DIMENSIONAL SHEAR DEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATION PROBLEMS , 2001 .

[15]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[16]  Jeong-Hyun Sohn,et al.  Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments , 2004 .

[17]  Stefan von Dombrowski,et al.  Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates , 2002 .

[18]  K. Bathe Finite Element Procedures , 1995 .

[19]  Ahmed A. Shabana,et al.  ANCF finite element/multibody system formulation of the ligament/bone insertion site constraints , 2010 .

[20]  Peter Eberhard,et al.  Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates , 2003 .

[21]  J. Gerstmayr,et al.  Comparison of Planar Structural Elements for Multibody Systems with Large Deformations , 2011 .

[22]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .

[23]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[24]  Aki Mikkola,et al.  Shear Correction for Thin Plate Finite Elements Based on the Absolute Nodal Coordinate Formulation , 2009 .

[25]  A. Shabana,et al.  DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .

[26]  A. Mikkola,et al.  A new locking-free shear deformable finite element based on absolute nodal coordinates , 2007 .

[27]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[28]  Robert J. Melosh,et al.  Structural Analysis of Solids , 1963 .

[29]  A. Shabana Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .

[30]  Aki Mikkola,et al.  Extended Digital Nomenclature Code for Description of Complex Finite Elements and Generation of New Elements , 2011 .

[31]  K. Nachbagauer,et al.  A Spatial Thin Beam Finite Element Based on the Absolute Nodal Coordinate Formulation Without Singularities , 2011 .

[32]  Johannes Gerstmayr,et al.  A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation , 2011 .

[33]  Graham G. Sanborn,et al.  Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements , 2011 .

[34]  A. Shabana,et al.  Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry , 2012 .

[35]  A. Mikkola,et al.  Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation , 2008 .

[36]  Aki Mikkola,et al.  Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation , 2006 .

[37]  Aki Mikkola,et al.  Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation , 2011 .