O2/O3 Microatmospheres in the Surface of Ganymede

Radiation-inducedbubbleformation,aprocessknowntocausethedeteriorationofreactormaterials,produces O2/O3microatmospheres in the icy surface of Ganymede. Energetic ions in Jupiter’s magnetosphere bombard this surface, producing vacancies and radicals in the ice. At the equatorial temperatures on Ganymede, the radicalsmigrateandreactefficiently,formingnewvolatilespeciesH2andO2,andthevacanciesaggregatetoform voids.WhereastheH2islostreadily,theO2accumulates,permeatingtheregolith,producingaweakatmosphere, and becoming trapped in the voids, forming gas-filled bubbles. Such bubbles (microatmospheres) form efficiently above10.3‐0.5timesthemeltingtemperatureofthematerialandcanattainahighdensityofO2,consistentwith the observation of “condensed” O2on Ganymede. Dissociation of O2in a microatmosphere by UV photons or the incident ions leads to formation of O3. Including the O( 1 D) interactions in the Chapman equations, a ratio O3/O212 310 24 is obtained, close to the estimate based on observations of Ganymede. Subject headings: planets and satellites: individual (Ganymede, Europa)—molecular processes— radiation mechanisms: nonthermal

[1]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[2]  J. Gittus Irradiation effects in crystalline solids , 1978 .

[3]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[4]  S. Krimigis,et al.  Composition of nonthermal ions in the Jovian magnetosphere , 1981 .

[5]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[6]  E. Sieveka,et al.  Thermal- and plasma-induced molecular redistribution on the icy satellites , 1982 .

[7]  W. Augustyniak,et al.  Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions , 1982 .

[8]  Robert E. Johnson,et al.  Planetary applications of ion induced erosion of condensed gas frosts , 1982 .

[9]  K. R. Farmer,et al.  Ion-induced molecular ejection from D_2O ice , 1984 .

[10]  W. Jesser,et al.  Microstructural contributions to bubble growth in helium ion irradiated nickel , 1984 .

[11]  E. Zeitler,et al.  The physical behavior of solid water at low temperatures and the embedding of electron microscopical specimens , 1985 .

[12]  Robert E. Johnson,et al.  Charged Particle Modification of Ices in the Saturnian and Jovian Systems , 1985 .

[13]  C. Muller Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry , 1987 .

[14]  B. Buratti,et al.  Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers - Observations with the International Ultraviolet Explorer , 1987 .

[15]  A. Laskar Diffusion in materials , 1990 .

[16]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[17]  E. Yagi Solid Krypton Precipitates in Kr-Implanted Aluminium , 1993 .

[18]  T. I. Quickenden,et al.  O2 Luminescence from UV-Excited H2O and D2O Ices , 1993 .

[19]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[20]  C. Wight,et al.  Photochemistry of ozone in solid mixtures with argon , 1994 .

[21]  Robert E. Johnson,et al.  Ultraviolet photodesorption from water ice , 1995 .

[22]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[23]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[24]  Keith S. Noll,et al.  The albedo spectrum of Europa from 2200 Å to 3300 Å , 1995 .

[25]  D. J. Southwood,et al.  Discovery of Ganymede's magnetic field by the Galileo spacecraft , 1996, Nature.

[26]  R E Johnson,et al.  Detection of Ozone on Ganymede , 1996, Science.

[27]  P. Thomas,et al.  Spectrophotometry of Amalthea and Thebe. , 1996 .

[28]  W. Calvin,et al.  O2 on Ganymede: Spectral characteristics and plasma formation mechanisms , 1996 .