Curvature from Graph Colorings

Given a finite simple graph G=(V,E) with chromatic number c and chromatic polynomial C(x). Every vertex graph coloring f of G defines an index i_f(x) satisfying the Poincare-Hopf theorem sum_x i_f(x)=chi(G). As a variant to the index expectation result we prove that E[i_f(x)] is equal to curvature K(x) satisfying Gauss-Bonnet sum_x K(x) = \chi(G), where the expectation is the average over the finite probability space containing the C(c) possible colorings with c colors, for which each coloring has the same probability.

[1]  L. A. Santaló Introduction to integral geometry , 1953 .

[2]  Oliver Knill,et al.  A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.

[3]  W. Blaschke Vorlesungen über Integralgeometrie , 1937 .

[4]  P. Wernicke,et al.  Über den kartographischen Vierfarbensatz , 1904 .

[5]  K. Appel,et al.  The Solution of the Four-Color-Map Problem , 1977 .

[6]  D. Barnette,et al.  Map Coloring Polyhedra and the Four Color Problem , 1984 .

[7]  T. L. Saaty,et al.  The four-color problem: Assaults and conquest , 1977 .

[8]  N. Hitchin A panoramic view of riemannian geometry , 2006 .

[9]  L. Nicolaescu Lectures on the Geometry of Manifolds , 1996 .

[10]  Oliver Knill,et al.  A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.

[11]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[12]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[13]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[14]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[15]  John Milnor,et al.  ON THE TOTAL CURVATURE OF KNOTS , 1950 .

[16]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[17]  Oliver Knill The Euler characteristic of an even-dimensional graph , 2013, ArXiv.

[18]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[19]  Carlos A. Berenstein,et al.  Integral Geometry on Trees , 1991 .

[20]  R. Fritsch,et al.  The four-color theorem : history, topological foundations, and idea of proof , 1998 .

[21]  Oliver Knill,et al.  On index expectation and curvature for networks , 2012, ArXiv.

[22]  R. Fritsch,et al.  The four color theorem , 1998 .

[23]  André Raspaud,et al.  Planar graphs without cycles of length from 4 to 7 are 3-colorable , 2005, J. Comb. Theory, Ser. B.

[24]  Robin J. Wilson Four Colors Suffice: How the Map Problem Was Solved , 2002 .

[25]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.

[26]  O. Knill An index formula for simple graphs , 2012, ArXiv.

[27]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[28]  Gary Chartrand,et al.  A First Course in Graph Theory , 2012 .

[29]  Paul C. Kainen,et al.  The Four-Color Problem , 1977 .