Distance domains: Continuity

We take the abstract basis approach to classical domain theory and extend it to quantitative domains. In doing so, we provide dual characterisations of distance domains (some new even in the classical case) as well as unifying and extending previous formal ball dualities, namely the Kostanek-Waszkiewicz and Romaguero-Valero theorems. In passing, we also characterise hemimetric spaces that admit a hemimetric Smyth completion.

[1]  Klaus Keimel,et al.  The Cuntz semigroup and domain theory , 2016, Soft Comput..

[2]  Óscar Valero,et al.  Domain theoretic characterisations of quasi-metric completeness in terms of formal balls† , 2010, Mathematical Structures in Computer Science.

[3]  Jean Goubault-Larrecq,et al.  Non-Hausdorff topology and domain theory , 2013 .

[4]  Tristan Bice,et al.  Yoneda completeness , 2015, Mathematical Structures in Computer Science.

[5]  Hans-Peter A. Künzi,et al.  On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..

[6]  M. Mislove,et al.  Mathematical Foundations of Programming Semantics , 1993, Lecture Notes in Computer Science.

[7]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[8]  Klaus Weihrauch,et al.  Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..

[9]  Jean Goubault-Larrecq Non-Hausdorff Topology and Domain Theory - Selected Topics in Point-Set Topology , 2013, New Mathematical Monographs.

[10]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[11]  Pawel Waszkiewicz,et al.  The formal ball model for -categories , 2010, Mathematical Structures in Computer Science.

[12]  Kim Ritter Wagner,et al.  Liminf Convergence in Omega-Categories , 1997, Theor. Comput. Sci..