Stability Results for Logarithmic Sobolev and Gagliardo–Nirenberg Inequalities

This paper is devoted to improvements of functional inequalities based on scalings and written in terms of relative entropies. When scales are taken into account and second moments fixed accordingly, deficit functionals provide explicit stability measurements, i.e., bound with explicit constants distances to the manifold of optimal functions. Various results are obtained for the Gaussian logarithmic Sobolev inequality and its Euclidean counterpart, for the Gaussian generalized Poincare inequalities and for the Gagliardo-Nirenberg inequalities. As a consequence, faster convergence rates in diffusion equations (fast diffusion, Ornstein-Uhlenbeck and porous medium equations) are obtained.

[1]  Giuseppe Toscani,et al.  Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays , 2015, 1501.03646.

[2]  Adrien Blanchet,et al.  Asymptotics of the Fast Diffusion Equation via Entropy Estimates , 2007, 0704.2372.

[3]  Elchanan Mossel,et al.  Robust dimension free isoperimetry in Gaussian space , 2012, 1202.4124.

[4]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[5]  Manuel del Pino,et al.  Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .

[6]  R. Latala,et al.  Between Sobolev and Poincaré , 2000, math/0003043.

[7]  Anton Arnold,et al.  Refined convex Sobolev inequalities , 2005 .

[8]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[9]  R. Illner,et al.  A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients , 2007 .

[10]  J. Dolbeault,et al.  Improved interpolation inequalities on the sphere , 2013, 1309.7931.

[11]  Fred B. Weissler,et al.  Logarithmic Sobolev inequalities for the heat-diffusion semigroup , 1978 .

[12]  Giuseppe Toscani,et al.  A Strengthened Entropy Power Inequality for Log-Concave Densities , 2014, IEEE Transactions on Information Theory.

[13]  W. Beckner A generalized Poincaré inequality for Gaussian measures , 1989 .

[14]  Giuseppe Toscani A concavity property for the reciprocal of Fisher information and its consequences on Costa's EPI , 2014, ArXiv.

[15]  Cédric Villani,et al.  A short proof of the "Concavity of entropy power" , 2000, IEEE Trans. Inf. Theory.

[16]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[17]  J. Dolbeault,et al.  Interpolation between Logarithmic Sobolev and Poincare Inequalities , 2007 .

[18]  Giuseppe Toscani,et al.  Best matching Barenblatt profiles are delayed , 2014, 1408.6781.

[19]  Convex Sobolev inequalities and spectral gap , 2005, math/0503221.

[20]  Cyril Roberto,et al.  Bounds on the deficit in the logarithmic Sobolev inequality , 2014, 1408.2115.

[21]  Giuseppe Toscani,et al.  An information-theoretic proof of Nash's inequality , 2012, ArXiv.

[22]  J. Dolbeault,et al.  Fast diffusion equations: matching large time asymptotics by relative entropy methods , 2010, 1005.1994.

[23]  G. Bianchi,et al.  A note on the Sobolev inequality , 1991 .

[24]  Giuseppe Toscani,et al.  The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.

[25]  E. Lieb,et al.  Stability Estimates for the Lowest Eigenvalue of a Schrödinger Operator , 2013, 1301.5032.

[26]  Jean Dolbeault,et al.  Sobolev and Hardy-Littlewood-Sobolev inequalities , 2013, 1312.2568.

[27]  J. Dolbeault,et al.  Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities , 2009, Proceedings of the National Academy of Sciences.

[28]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[29]  J. Demange Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature , 2008 .

[30]  R. Jackson Inequalities , 2007, Algebra for Parents.

[31]  José A. Carrillo,et al.  Nonlinear Stability in Lp for a Confined System of Charged Particles , 2002, SIAM J. Math. Anal..

[32]  G. Toscani,et al.  Improved interpolation inequalities, relative entropy and fast diffusion equations , 2011, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[33]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[34]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[35]  Giuseppe Savaré,et al.  From Poincaré to Logarithmic Sobolev Inequalities: A Gradient Flow Approach , 2011, SIAM J. Math. Anal..

[36]  Max Fathi,et al.  Quantitative logarithmic Sobolev inequalities and stability estimates , 2014, 1410.6922.

[37]  M. Ledoux The concentration of measure phenomenon , 2001 .

[38]  R. McCann,et al.  Higher order time asymptotics of fast diffusion in euclidean space: a dynamical systems approach , 2012, 1204.6434.

[39]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[40]  Aldo Pratelli,et al.  The sharp Sobolev inequality in quantitative form , 2009 .

[41]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[42]  Ansgar Jüngel,et al.  Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research , 2004 .

[43]  Giuseppe Savaré,et al.  On the Bakry-Emery criterion for linear diffusions and weighted porous media equations , 2007, Communications in Mathematical Sciences.

[44]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[45]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[46]  J. Carrillo,et al.  Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations , 2014, 1403.3128.

[47]  Michel Ledoux,et al.  A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .

[48]  J. Carrillo,et al.  Fine Asymptotics for Fast Diffusion Equations , 2003 .

[49]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[50]  Ivan Nourdin,et al.  Stein’s method, logarithmic Sobolev and transport inequalities , 2014, Geometric and Functional Analysis.

[51]  Solomon Kullback On the convergence of discrimination information (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[52]  P. Federbush Partially Alternate Derivation of a Result of Nelson , 1969 .