Learning rotation invariant convolutional filters for texture classification

We present a method for learning discriminative filters using a shallow Convolutional Neural Network (CNN). We encode rotation invariance directly in the model by tying the weights of groups of filters to several rotated versions of the canonical filter in the group. These filters can be used to extract rotation invariant features well-suited for image classification. We test this learning procedure on a texture classification benchmark, where the orientations of the training images differ from those of the test images. We obtain results comparable to the state-of-the-art. Compared to standard shallow CNNs, the proposed method obtains higher classification performance while reducing by an order of magnitude the number of parameters to be learned.

[1]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[2]  Pietro Perona,et al.  Rotation invariant texture recognition using a steerable pyramid , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[3]  Joachim M. Buhmann,et al.  Transformation-Invariant Convolutional Jungles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Wen-Rong Wu,et al.  Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model , 1996, IEEE Trans. Image Process..

[5]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[6]  Koray Kavukcuoglu,et al.  Exploiting Cyclic Symmetry in Convolutional Neural Networks , 2016, ICML.

[7]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Fakhry M. Khellah,et al.  Texture Classification Using Dominant Neighborhood Structure , 2011, IEEE Transactions on Image Processing.

[9]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[10]  Fa Wu,et al.  Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification , 2015, ArXiv.

[11]  Wen-Rong Wu,et al.  Correction To "rotation And Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, And Hidden Markov Model" , 1996, IEEE Trans. Image Process..

[12]  Stefan Roth,et al.  Learning rotation-aware features: From invariant priors to equivariant descriptors , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Dimitri Van De Ville,et al.  Rotation–Covariant Texture Learning Using Steerable Riesz Wavelets , 2014, IEEE Transactions on Image Processing.

[14]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[15]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[17]  Matti Pietikäinen,et al.  LOAD: Local orientation adaptive descriptor for texture and material classification , 2015, Neurocomputing.

[18]  Honglak Lee,et al.  Learning Invariant Representations with Local Transformations , 2012, ICML.

[19]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[20]  Joachim M. Buhmann,et al.  TI-POOLING: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Edward H. Adelson,et al.  Sensing and Recognizing Surface Textures Using a GelSight Sensor , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[23]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[24]  Martial Hebert,et al.  Learning to Extract Motion from Videos in Convolutional Neural Networks , 2016, ACCV.

[25]  Christopher K. I. Williams,et al.  Transformation Equivariant Boltzmann Machines , 2011, ICANN.

[26]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[27]  Jun Guo,et al.  Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification , 2013, BMVC.

[28]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Beat Fasel,et al.  Rotation-Invariant Neoperceptron , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[30]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.