Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals

Reflection-mode tip-enhanced Raman scattering (TERS) has the advantage to characterize any sample, particularly opaque, bulk, and multilayered samples. However, the background signal in reflection-mode TERS is huge due to large focus spots associated with an objective lens that has a long working distance. Moreover, for a multilayered and bulk sample, the Raman signal from the bulk layer interferes with the Raman signal on a thin surface layer. This unwanted bulk background signal reduces the sensitivity of the measurement and makes it difficult to get a high-contrast TERS image in the reflection mode. Here, we demonstrate two techniques to suppress the far-field Raman signals coming from the focus area and bulk silicon germanium substrate. First, we reduce the far-field signal by controlling the polarization state of the incident and scattered Raman as well as manipulating the well-defined polarization of a crystalline sample, which strongly depends on the polarization and propagation of the incident lig...

[1]  S. Kawata,et al.  Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy , 2007 .

[2]  Christian Hafner,et al.  Tuning the resonance frequency of Ag-coated dielectric tips. , 2007, Optics express.

[3]  S. Kawata,et al.  Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy , 2007 .

[4]  J. Maguire,et al.  High contrast scanning nano‐Raman spectroscopy of silicon , 2007 .

[5]  M. Hecker,et al.  Raman intensity enhancement in silicon-on-insulator substrates by laser deflection at atomic force microscopy tips and particles , 2007 .

[6]  H. K. Wickramasinghe,et al.  Nanoscale quantitative stress mapping with atomic force microscopy , 2007 .

[7]  Quang Nguyen,et al.  Simple model for the polarization effects in tip-enhanced Raman spectroscopy , 2007 .

[8]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[9]  Mark D. Foster,et al.  Scanning nano-Raman spectroscopy of semiconducting structures , 2006, SPIE Optics + Photonics.

[10]  Satoshi Kawata,et al.  Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode , 2006 .

[11]  J. Maguire,et al.  Nano-Raman spectroscopy with side-illumination optics , 2005 .

[12]  S. Kawata,et al.  Highly sensitive strain detection in strained silicon by surface-enhanced Raman spectroscopy , 2005 .

[13]  T. Tada,et al.  Subwavelength-Resolution Raman Microscopy of Si Structures Using Metal-Particle-Topped AFM Probe , 2005 .

[14]  Satoshi Kawata,et al.  Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy , 2004 .

[15]  D. Bulgarevich,et al.  Apertureless Tip-Enhanced Raman Microscopy with Confocal Epi-Illumination/Collection Optics , 2004, Applied spectroscopy.

[16]  B. Ren,et al.  Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching , 2004 .

[17]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[18]  Zexiang Shen,et al.  Near‐field scanning Raman microscopy using apertureless probes , 2003 .

[19]  Satoshi Kawata,et al.  Near-field enhanced Raman spectroscopy using side illumination optics , 2002 .

[20]  M. Anderson,et al.  A Raman-atomic force microscope for apertureless-near-field spectroscopy and optical trapping , 2002 .

[21]  Shinichi Takagi,et al.  Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction , 2001 .

[22]  Hendrik F. Hamann,et al.  Strength of the electric field in apertureless near-field optical microscopy , 2001 .

[23]  Satoshi Kawata,et al.  Near-field Raman scattering enhanced by a metallized tip , 2001 .

[24]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[25]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[26]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[27]  Zouheir Sekkat,et al.  Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy , 1999, Optics & Photonics.

[28]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[29]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[30]  David N. Batchelder,et al.  Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy , 1998 .

[31]  Lukas Novotny,et al.  Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams , 1998 .

[32]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[33]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[34]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[35]  J. Welser,et al.  Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors , 1994, IEEE Electron Device Letters.

[36]  M. Mehicic,et al.  Practical Raman Spectroscopy : Springer Verlag, Berlin, 1989 (ISBN 3-540-50254-8). viii + 157 pp. Price DM 78.00 , 1990 .

[37]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[38]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[39]  R. Loudon The Raman effect in crystals , 1964 .

[40]  E. Palik,et al.  Aluminum Arsenide (AIAs) , 1997 .

[41]  Thomas E. Furtak,et al.  Surface-Enhanced Raman Scattering , 1982 .