Global solutions and blow up solutions to a class of pseudo-parabolic equations with nonlocal term

In this paper, we investigate an initial boundary value problem to a class of pseudo-parabolic partial differential equations with Newtonian nonlocal term. First, the local existence and uniqueness of a weak solution is established. In virtue of the energy functional and the related Nehari manifold, we also describe the exponent decay behavior and the blow up phenomenon of weak solutions with different kinds of initial data. Our second conclusion states that some solutions starting in a potential well exist globally, whereas solutions with suitable initial data outside the potential well must blow up. Furthermore, the instability of a ground state equilibrium solution is studied.

[1]  Isabella Ianni,et al.  Local and global solutions for some parabolic nonlocal problems , 2011, 1108.4183.

[2]  Tsuan Wu Ting,et al.  Certain non-steady flows of second-order fluids , 1963 .

[3]  David H. Sattinger,et al.  On global solution of nonlinear hyperbolic equations , 1968 .

[4]  Tobias Weth,et al.  Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level , 2005, Differential and Integral Equations.

[5]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[6]  Guy Vallet,et al.  Existence results for nonlinear pseudoparabolic problems , 2011 .

[7]  M. Willem Minimax Theorems , 1997 .

[8]  Sining Zheng,et al.  Second critical exponent and life span for pseudo-parabolic equation☆ , 2012 .

[9]  David Colton,et al.  Pseudoparabolic equations in one space variable , 1972 .

[10]  Vı́ctor Padrón,et al.  Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation , 2003 .

[11]  M. Meyvaci,et al.  Blow up of solutions of pseudoparabolic equations , 2009 .

[12]  Antonio Ambrosetti,et al.  On Schrödinger-Poisson Systems , 2008 .

[13]  S. L. Sobolev,et al.  On a New Problem of Mathematical Physics , 2006 .

[14]  Isabella Ianni,et al.  GROUND AND BOUND STATES FOR A STATIC SCHRÖDINGER–POISSON–SLATER PROBLEM , 2009, 0904.4107.

[15]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  Maxim Olegovich Korpusov,et al.  Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics. II , 2004 .

[17]  Ralph E. Showalter,et al.  Pseudoparabolic Partial Differential Equations , 1970 .

[18]  Dimitri Mugnai,et al.  Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations , 2004 .

[19]  Maxim Olegovich Korpusov,et al.  Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type , 2008 .

[20]  David Colton,et al.  Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures , 1979 .

[21]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[22]  Jingxue Yin,et al.  Cauchy problems of semilinear pseudo-parabolic equations ✩ , 2009 .

[23]  William Rundell,et al.  The construction of solutions to pseudoparabolic equations in noncylindrical domains , 1978 .

[24]  Michel Pierre,et al.  On the Maximum Principle for Pseudoparabolic Equations. , 1980 .

[25]  Runzhang Xu,et al.  Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations , 2008 .

[26]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[27]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .

[28]  Liu Yacheng,et al.  On potential wells and vacuum isolating of solutions for semilinear wave equations , 2003 .

[29]  Heinz Brill,et al.  A semilinear Sobolev evolution equation in a Banach space , 1977 .

[30]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[31]  Runzhang Xu,et al.  Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations , 2013 .

[32]  Filomena Pacella,et al.  Sign-changing solutions of Lane Emden problems with interior nodal line and semilinear heat equations☆ , 2012 .