The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application

In this work, we extend the well-known Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth systems, defined in three zones separated by two switching manifolds $$x=-\alpha $$x=-α and $$x=\beta $$x=β. We suppose that the dynamic in each zone is governed by a smooth system. When a trajectory reaches the switching manifolds, then reset maps describing impacting rules on the switching manifolds will be applied instantaneously before the trajectory enters into the other zone. We also assume that the unperturbed system is a piecewise-defined continuous Hamiltonian system and possesses a pair of heteroclinic orbits transversally crossing the switching manifolds. Then, we study the persistence of the heteroclinic orbits under a non-autonomous periodic perturbation and the reset maps. In order to obtain this objective, we derive a Melnikov-type function by using the Hamiltonian function to measure the distance of the perturbed stable and unstable manifolds in this system. Finally, we employ the obtained Melnikov-type function to study the persistence of a heteroclinic cycle and complicated dynamics near the heteroclinic cycle for a concrete planar piecewise-smooth system.

[1]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[2]  M. Kunze Non-Smooth Dynamical Systems , 2000 .

[3]  W. Zhang,et al.  Homoclinic bifurcations and chaotic dynamics for a piecewise linear system under a periodic excitation and a viscous damping , 2015 .

[4]  Emilio Freire,et al.  Melnikov theory for a class of planar hybrid systems , 2013 .

[5]  Michal Fečkan,et al.  Bifurcation and chaos near sliding homoclinics , 2010 .

[6]  Mario di Bernardo,et al.  Sliding bifurcations: a Novel Mechanism for the Sudden Onset of Chaos in dry Friction oscillators , 2003, Int. J. Bifurc. Chaos.

[7]  Zhengdong Du,et al.  Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum , 2015 .

[8]  Joaquin Alvarez,et al.  Melnikov-Type Chaos of Planar Systems with Two Discontinuities , 2015, Int. J. Bifurc. Chaos.

[9]  Wei Zhang,et al.  Melnikov Method for a Three-Zonal Planar Hybrid Piecewise-Smooth System and Application , 2016, Int. J. Bifurc. Chaos.

[10]  Tere M. Seara,et al.  The Melnikov Method and Subharmonic Orbits in a Piecewise-Smooth System , 2012, SIAM J. Appl. Dyn. Syst..

[11]  Zhengdong Du,et al.  Melnikov method for homoclinic bifurcation in nonlinear impact oscillators , 2005 .

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[14]  Wei Zhang,et al.  Melnikov Method for a Class of Planar Hybrid Piecewise-Smooth Systems , 2016, Int. J. Bifurc. Chaos.

[15]  Michal Fečkan,et al.  Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems , 2012 .

[16]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[17]  F. Vasca,et al.  Bifurcations in piecewise-smooth feedback systems , 2002 .

[18]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[19]  Wei Zhang,et al.  Melnikov-Type Method for a Class of Discontinuous Planar Systems and Applications , 2014, Int. J. Bifurc. Chaos.

[20]  O. Makarenkov,et al.  Dynamics and bifurcations of nonsmooth systems: A survey , 2012 .

[21]  Jan Awrejcewicz,et al.  Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods , 2007 .

[22]  R. Tian,et al.  Chaotic threshold for a class of impulsive differential system , 2016 .

[23]  Peter Kukučka,et al.  Melnikov method for discontinuous planar systems , 2007 .

[24]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[25]  Michal Fečkan,et al.  Homoclinic Trajectories in Discontinuous Systems , 2008 .

[26]  S. Hogan,et al.  The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks , 2013, 1305.1582.

[27]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[28]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[29]  Andrea L. Bertozzi,et al.  Heteroclinic orbits and chaotic dynamics in planar fluid flows , 1988 .