Potential of Extremophiles for Biotechnological and Petroleum Applications

The ability of microorganisms to survive under harsh conditions has recently prompted researchers to study these microbes to better understand their characteristics and eventually utilize them in various applications. Extremophilic microorganisms withstand one or more extreme condition constraints due to cold, heat, high acidity, high alkalinity, high salinity, and high pressure levels. These constraints would destroy normal microorganisms. Extremophiles can be classified according to the environment in which they survive. Many extremophilic microorganisms possess properties suitable for biotechnological and commercial uses. This article discusses the characteristics and future potentials of extremophiles.

[1]  J. T. Staley,et al.  Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. , 1996, International journal of systematic bacteriology.

[2]  S. Belyaev,et al.  Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria , 1992 .

[3]  A. Tayal,et al.  Viscosity Reduction Of Hydraulic Fracturing Fluids Through Enzymatic Hydrolysis , 1997 .

[4]  J. Foght,et al.  Growth of Extremophiles on Petroleum , 1999 .

[5]  E. Galinski,et al.  Osmoadaptation in bacteria. , 1995, Advances in microbial physiology.

[6]  D. Delille,et al.  Effectiveness of bioremediation for oil-polluted Antarctic seawater , 1998, Polar Biology.

[7]  A. Ventosa,et al.  Halotolerant Bacillus diversity in hypersaline environments , 1998 .

[8]  T. D. Brock,et al.  Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature , 2004, Archiv für Mikrobiologie.

[9]  D. Rawlings Industrial practice and the biology of leaching of metals from ores The 1997 Pan Labs Lecture , 1998, Journal of Industrial Microbiology and Biotechnology.

[10]  Antonio Ventosa,et al.  Biology of Moderately Halophilic Aerobic Bacteria , 1998, Microbiology and Molecular Biology Reviews.

[11]  R. Bachofen,et al.  Microbial recovery of metals from solids , 1997 .

[12]  T. R. Clark,et al.  Coal Depyritization by the Thermophilic Archaeon Metallosphaera sedula , 1993, Applied and environmental microbiology.

[13]  A. Steinbüchel,et al.  Biosynthesis of polyesters in bacteria and recombinant organisms , 1998 .

[14]  A. Steinbüchel,et al.  Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor , 2000, Applied Microbiology and Biotechnology.

[15]  T. Sugio,et al.  Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans , 1985, Applied and environmental microbiology.

[16]  M. Alexander,et al.  Biodegradation of chemicals of environmental concern. , 1981, Science.

[17]  Michel Fick,et al.  Models of bacterial leaching , 1995 .

[18]  T. Peeples,et al.  Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses , 1995, Applied and environmental microbiology.

[19]  M. Yakimov,et al.  Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. , 1998, Biochimica et biophysica acta.

[20]  M. Adams,et al.  Finding and using hyperthermophilic enzymes. , 1998, Trends in biotechnology.

[21]  K. Bosecker Microbial leaching in environmental clean-up programmes , 2001 .

[22]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .

[23]  T. Sauer,et al.  Bacterial milking: A novel bioprocess for production of compatible solutes , 1998, Biotechnology and bioengineering.

[24]  J. Foght,et al.  Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens , 1996, Biodegradation.

[25]  O. Tuovinen,et al.  Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans , 1971 .

[26]  Robert M. Kelly,et al.  ENZYMES FROM MICROORGANISMS IN EXTREME ENVIRONMENTS , 1995 .

[27]  Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus , 1992, Applied Microbiology and Biotechnology.

[28]  S. Harayama,et al.  Petroleum biodegradation in marine environments. , 1999, Journal of molecular microbiology and biotechnology.

[29]  F. Perler,et al.  Extremozymes: Expanding the Limits of Biocatalysis , 1995, Bio/Technology.

[30]  J. Aislabie,et al.  Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica , 2000, Polar Biology.

[31]  K. Miyamoto Renewable biological systems for alternative sustainable energy production , 1997 .

[32]  B. Tindall,et al.  Biotechnological prospects for halophiles and halotolerant micro-organisms. , 1992 .

[33]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[34]  M. Adams,et al.  Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus , 1993, Journal of bacteriology.

[35]  R. Crawford,et al.  Bioremediation : principles and applications , 1996 .

[36]  P. Golyshin,et al.  Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. , 1999, The new microbiologica.

[37]  H. Ehrlich Past, present and future of biohydrometallurgy , 2001 .

[38]  F. Rodríguez-Valera,et al.  Halobacteria as producers of polyhydroxyalkanoates , 1992 .

[39]  J. Foght,et al.  Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. , 1999, Canadian journal of microbiology.

[40]  Jonathan Woodward,et al.  Biotechnology: Enzymatic production of biohydrogen , 2000, Nature.

[41]  M. R. Islam,et al.  Integrated management of radioactive strontium contamination in aqueous stream systems. , 2001, Journal of environmental management.

[42]  J. Modak,et al.  Electrobioleaching of sphalerite flotation concentrate , 1998 .

[43]  F. Schinner,et al.  Biological decontamination of oil spills in cold environments , 1999 .

[44]  Lilly,et al.  Design of a control system for biotransformation of toxic substrates: toluene hydroxylation by Pseudomonas putida UV4. , 2000, Enzyme and microbial technology.

[45]  C. R. Bell,et al.  Microbial Biosystems: New Frontiers , 2000 .