Selection of Prototype Rules: Context Searching Via Clustering

Prototype-based rules are an interesting alternative to fuzzy and crisp logical rules, in many cases providing simpler, more accurate and more comprehensible description of the data. Such rules may be directly converted to fuzzy rules. A new algorithm for generation of prototype-based rules is introduced and a comparison with results obtained by neurofuzzy systems on a number of datasets provided.

[1]  James C. Bezdek,et al.  Nearest prototype classifier designs: An experimental study , 2001, Int. J. Intell. Syst..

[2]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[3]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[4]  Marek Grochowski,et al.  Comparison of Instance Selection Algorithms II. Results and Comments , 2004, ICAISC.

[5]  Wlodzislaw Duch,et al.  Meta-learning via Search Combined with Parameter Optimization , 2002, Intelligent Information Systems.

[6]  Włodzisław Duch,et al.  Similarity-based methods: a general framework for classification, approximation and association , 2000 .

[7]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[8]  Marek Grochowski,et al.  Comparison of Instances Seletion Algorithms I. Algorithms Survey , 2004, ICAISC.

[9]  K. Grudzinski,et al.  Prototype based rules-a new way to understand the data , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[10]  Wlodzislaw Duch,et al.  Fuzzy Rule-Based Systems Derived from Similarity to Prototypes , 2004, ICONIP.

[11]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[12]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[13]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[14]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[15]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[16]  Tony R. Martinez,et al.  Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..

[17]  Geerd H. F. Diercksen,et al.  Classification, Association and Pattern Completion using Neural Similarity Based Methods , 2000 .

[18]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[19]  David G. Stork,et al.  Pattern Classification , 1973 .

[20]  Jacek M. Zurada,et al.  Computational intelligence methods for rule-based data understanding , 2004, Proceedings of the IEEE.

[21]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[22]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[23]  Witold Pedrycz,et al.  Conditional Fuzzy C-Means , 1996, Pattern Recognit. Lett..