Wave numbers and Ar pressure-induced shifts of 198Hg atomic lines measured by Fourier transform spectroscopy

Wave numbers and argon-pressure-induced shifts of mercury emission lines were measured using a UV/visible Fourier transform spectrometer (FTS). The observations were made with electrodeless lamps containing isotopically pure 198Hg and argon buffer gas at pressures of 33 Pa (1/4 Torr), 400 Pa (3 Torr), 933 Pa (7 Torr) and 1333 Pa (10 Torr). Calibration of the FTS wave number scale was obtained from the four most prominent 198Hg lines (6p 3P2–7s 3S1 at 546.2 nm, 6p 3P1–7s 3S1 at 436 nm, 6p 3P0–7s 3S1 at 404.8 nm and 6p 3P2–6d 3D3 at 365.1 nm), enabling measurements of wave numbers and argon pressure shifts of other UV and visible mercury transitions with high accuracy. Our measurements provide new data for the wave numbers and pressure-induced shifts of 20 mercury lines. The wave numbers of mercury lines emitted from the 400 Pa (3 Torr) lamp can be used as standards for wavelength calibration in inductively coupled plasma (ICP) spectrochemical analysis or in experiments where medium-resolution monochromators are used. The pressure-induced shifts of the 198Hg emission lines are in reasonable agreement with theoretical predictions and could be of interest for validating calculations of mercury–argon interactions.

[1]  M. Salit,et al.  Investigation of single-factor calibration of the wave-number scale in Fourier-transform spectroscopy , 2004 .

[2]  L. Pendrill,et al.  Requirements of weighing in legal metrology , 2003 .

[3]  T. Quinn Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001) , 2003 .

[4]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data (version 1.0) , 2003 .

[5]  J. Brault,et al.  Argon I Lines Produced in a Hollow Cathode Source, 332 nm to 5865 nm , 2002, Journal of research of the National Institute of Standards and Technology.

[6]  S. Johansson,et al.  An Optical Region Elemental Abundance Analysis of the HgMn Type Star HR 7775 , 2000 .

[7]  R. Levis,et al.  Orientational averaging in the intense field tunnel ionization of molecules , 2000 .

[8]  E. Vredenbregt,et al.  Long-range diatomic s + p potentials of heavy rare gases , 1998 .

[9]  M. Salit,et al.  Practical wavelength calibration considerations for UV-visible Fourier-transform spectroscopy. , 1996, Applied optics.

[10]  Craig J. Sansonetti,et al.  Precise measurements of hyperfine components in the spectrum of molecular iodine , 1996 .

[11]  C J Sansonetti,et al.  Irradiances of spectral lines in mercury pencil lamps. , 1996, Applied optics.

[12]  C J Sansonetti,et al.  Wavelengths of spectral lines in mercury pencil lamps. , 1996, Applied optics.

[13]  Gibson,et al.  Absolute measurements of optical oscillator strengths of noble-gas resonance lines. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  J. W. Brault,et al.  Argon ion linelist and level energies in the hollow-cathode discharge , 1995 .

[15]  M. Salit,et al.  UV/visible Fourier transform spectroscopy using an inductively-coupled plasma : dual-channel noise cancellation , 1993 .

[16]  A. Thorne Fourier Transform Spectrometry in the Ultraviolet , 1991 .

[17]  R. Trawiński,et al.  Low-pressure broadening and shift of 3p54s-3p5np (n=4,5,6) argon spectral lines perturbed by He, Ne, Ar , 1990 .

[18]  J. Szudy,et al.  Broadening and shift of the 8p 2P12,3/2-7s 2S1/2 thallium spectral lines perturbed by neon and argon , 1987 .

[19]  Anne P. Thorne,et al.  A Fourier transform spectrometer for the vacuum ultraviolet: design and performance , 1987 .

[20]  B. Kaulakys Broadening and shift of Rydberg levels by elastic collisions with rare-gas atoms , 1984 .

[21]  John F. Kielkopf,et al.  The effect of neutral nonresonant collisions on atomic spectral lines , 1982 .

[22]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[23]  G. Peach,et al.  Theory of the pressure broadening and shift of spectral lines. , 1981 .

[24]  E. Lewis Collisional relaxation of atomic excited states, line broadening and interatomic interactions , 1980 .

[25]  D. Evans,et al.  Collisional broadening and shift of neutral argon spectral lines , 1976 .

[26]  Y. Shimoni,et al.  Quantal studies of alkali-metal-rare-gas collisions. III. Broadening of Na D lines by He , 1975 .

[27]  F. Schuller,et al.  Perturbation of spectral lines by atomic interactions , 1974 .

[28]  C. J. Humphreys,et al.  New interferometric observations of Ar i in the photographic region , 1974 .

[29]  Göran Norlén,et al.  Wavelengths and Energy Levels of Ar I and Ar II based on New Interferometric Measurements in the Region 3 400-9 800 Å , 1973 .

[30]  E. Lewis Self-broadening and oscillator strengths in the rare gases , 1967 .

[31]  W. R. Hindmarsh,et al.  Interpretation of collision broadening and shift in atomic spectra , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  H. P. Broida,et al.  Microwave Discharge Cavities Operating at 2450 MHz , 1964 .

[33]  V. Kaufman,et al.  WAVELENGTHS, ENERGY LEVELS, AND PRESSURE SHIFTS IN MERCURY 198 , 1962 .

[34]  M. Baranger Spectral Line Broadening in Plasmas , 1962 .

[35]  Shang-yi Ch'en,et al.  Broadening and Shift of Spectral Lines Due to the Presence of Foreign Gases , 1957 .

[36]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[37]  K. Burns,et al.  Interference Measurements in the Spectrum of Argon I , 1953 .

[38]  T. A. Littlefield,et al.  Argon vacuum wave-length measurements , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  K. G. Kessler,et al.  Wave-Lengths of Mercury 198 , 1950 .

[40]  W. Meggers A light wave of artificial mercury as the ultimate standard of length. , 1948, Journal of the Optical Society of America.

[41]  A. Unsöld,et al.  Physik der Sternatmosphären , 1938 .