Anatomy of the Photochemical Reaction: Excited-State Dynamics Reveals the C-H Acidity Mechanism of Methoxy Photo-oxidation on Titania.

Light-driven chemical reactions on semiconductor surfaces have potential for addressing energy and pollution needs through efficient chemical synthesis; however, little is known about the time evolution of excited states that determine reaction pathways. Here, we study the photo-oxidation of methoxy (CH3O) derived from methanol on the rutile TiO2(110) surface using ab initio simulations to create a molecular movie of the process. The movie sequence reveals a wealth of information on the reaction intermediates, time scales, and energetics. The reaction is broken in three stages, described by Lewis structures directly derived from the "hole" wave functions that lead to the concept of "photoinduced C-H acidity". The insights gained from this work can be generalized to a set of simple rules that can predict the efficiency of photo-oxidation reactions in reactant-catalyst pairs.

[1]  E. Kaxiras,et al.  Dynamics of the Photogenerated Hole at the Rutile TiO2(110)/Water Interface: A Nonadiabatic Simulation Study , 2014 .

[2]  Wenshao Yang,et al.  Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). , 2013, Journal of the American Chemical Society.

[3]  D. J. Mowbray,et al.  Level alignment of a prototypical photocatalytic system: methanol on TiO2(110). , 2013, Journal of the American Chemical Society.

[4]  Zhibo Ma,et al.  Methyl Formate Production on TiO2(110), Initiated by Methanol Photocatalysis at 400 nm , 2013 .

[5]  Stephen C. Jensen,et al.  Sequential photo-oxidation of methanol to methyl formate on TiO2(110). , 2013, Journal of the American Chemical Society.

[6]  Z. Dohnálek,et al.  Importance of Diffusion in Methanol Photochemistry on TiO2(110) , 2012 .

[7]  M. A. Henderson,et al.  Role of Water in Methanol Photochemistry on Rutile TiO2(110) , 2012 .

[8]  Zhibo Ma,et al.  Stepwise photocatalytic dissociation of methanol and water on TiO2(110). , 2012, Journal of the American Chemical Society.

[9]  M. A. Henderson,et al.  Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2 , 2011 .

[10]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[11]  Dominik Marx,et al.  Charge localization dynamics induced by oxygen vacancies on the TiO₂(110) surface. , 2010, Physical review letters.

[12]  Michel Dupuis,et al.  Localized Electronic States from Surface Hydroxyls and Polarons in TiO2(110) , 2009 .

[13]  G. Schatz The journal of physical chemistry letters , 2009 .

[14]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[15]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[16]  Robert Lindsay,et al.  Chemical reactions on rutile TiO2(110). , 2008, Chemical Society reviews.

[17]  Efthimios Kaxiras,et al.  Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. , 2008, The Journal of chemical physics.

[18]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[19]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[20]  R. Madix,et al.  Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO , 2003 .

[21]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[22]  Andreas Görling,et al.  Density-functional theory beyond the Hohenberg-Kohn theorem , 1999 .

[23]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .