Remote sensing of phytoplankton functional types

Abstract The principal goal in early missions of satellite-borne visible spectral radiometry (ocean colour) was to create synoptic fields of phytoplankton biomass indexed as concentration of chlorophyll-a. In the context of climate change, a major application of the results has been in the modelling of primary production and the ocean carbon cycle. It is now recognised that a partition of the marine autotrophic pool into a suite of phytoplankton functional types, each type having a characteristic role in the biogeochemical cycle of the ocean, would increase our understanding of the role of phytoplankton in the global carbon cycle. At the same time, new methods have been emerging that use visible spectral radiometry to map some of the phytoplankton functional types. Here, we assess the state of the art, and suggest paths for future work.

[1]  R. Goericke,et al.  Estimating the contribution of microalgal taxa to chlorophyll a in the field--variations of pigment ratios under nutrient- and light-limited growth , 1998 .

[2]  H. Bouman,et al.  Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes , 2006, Science.

[3]  W. Gregg Reports of the International Ocean-Colour Coordinating Group , 2007 .

[4]  Trevor Platt,et al.  Remote sensing of ocean colour: Towards algorithms for retrieval of pigment composition , 2005 .

[5]  T Platt,et al.  Ocean-color model incorporating transspectral processes. , 1998, Applied optics.

[6]  A. Basset,et al.  Body size–abundance distributions of nano- and micro-phytoplankton guilds in coastal marine ecosystems , 2005 .

[7]  R. Guillard,et al.  Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in prasinophyceae (Chlorophyta) , 1997 .

[8]  Hanne Kaas,et al.  Effects of nutrient-limitation and irradiance on marine phytoplankton pigments , 2002 .

[9]  P. Falkowski,et al.  Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids , 2002 .

[10]  S. Thiria,et al.  Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. , 2007, Applied optics.

[11]  J. Ras,et al.  Validation of MERIS reflectance and chlorophyll during the BENCAL cruise October 2002: preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters , 2007 .

[12]  Joanna Isobel House,et al.  Maximum impacts of future reforestation or deforestation on atmospheric CO2 , 2002 .

[13]  E. Carpenter,et al.  Detecting Trichodesmium blooms in SeaWiFS imagery , 2001 .

[14]  E. Carpenter,et al.  New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans. , 2000, Trends in microbiology.

[15]  Sallie W. Chisholm,et al.  Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients , 2006, Science.

[16]  R. Simó,et al.  Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. , 2001, Trends in ecology & evolution.

[17]  Annick Bricaud,et al.  Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water‐leaving radiances at SeaWiFS channels in a continental shelf region off Brazil , 2006 .

[18]  J. Blondel Guilds or functional groups: does it matter? , 2003 .

[19]  J. Caddy,et al.  Productivity estimates for the Mediterranean: evidence of accelerating ecological change , 1995 .

[20]  P. Liss,et al.  Marine sulphur emissions , 1997 .

[21]  Charles S. Yentsch,et al.  An imaging-in-flow system for automated analysis of marine microplankton , 1998 .

[22]  R. B. Root The Niche Exploitation Pattern of the Blue‐Gray Gnatcatcher , 1967 .

[23]  Graham P. Harris,et al.  Detection, identification and mapping of cyanobacteria — Using remote sensing to measure the optical quality of turbid inland waters , 1994 .

[24]  T. Platt,et al.  Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra , 1998 .

[25]  P. M. Holligan,et al.  Optical impacts of oceanic coccolithophore blooms , 1999 .

[26]  N. Zaccarelli,et al.  Nutrient loading and spatial–temporal dynamics of phytoplankton guilds in a Southern Italian Coastal Lagoon (Lake Alimini Grande, Otranto, Italy) , 2004 .

[27]  T. Smyth,et al.  Optical modeling and measurements of a coccolithophore bloom. , 2002, Applied optics.

[28]  H. Gordon,et al.  Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. , 1975, Applied optics.

[29]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[30]  D. Cushing Marine ecology and fisheries , 1975, Environmental Biology of Fishes.

[31]  T. Platt,et al.  Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches , 2001 .

[32]  Hervé Claustre,et al.  Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter , 2001 .

[33]  D. Karl,et al.  Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA , 1999 .

[34]  Christiane Lancelot,et al.  Phaeocystis blooms in the global ocean and their controlling mechanisms: a review , 2005 .

[35]  D. Siegel,et al.  An improved bio‐optical model for the remote sensing of Trichodesmium spp. blooms , 2005 .

[36]  Colin Brownlee,et al.  Algal Calcification and Silicification , 2002 .

[37]  R. Jonker,et al.  Flow cytometry as a tool for the study of phytoplankton , 2000 .

[38]  Victor Smetacek,et al.  A watery arms race , 2001, Nature.

[39]  M. Veldhuis,et al.  Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and composition , 2004 .

[40]  André Morel,et al.  In-water and remote measurements of ocean color , 1980 .

[41]  R. ParsonsT,et al.  Jellyfish Population Explosions: Revisiting a Hypothesis of Possible Causes , 2002 .

[42]  Colin S. Reynolds,et al.  Towards a functional classification of the freshwater phytoplankton , 2002 .

[43]  T. Tyrrell,et al.  Emiliania huxleyi: bloom observations and the conditions that induce them , 2004 .

[44]  Trevor Platt,et al.  Spectral effects in bio-optical control on the ocean system , 2007 .

[45]  P. I. Miller,et al.  The cause of bright waters in the Bering Sea in winter , 2003 .

[46]  J. Collier,et al.  FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY , 2000, Journal of phycology.

[47]  B. Enquist,et al.  Rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[48]  C. Brown Remote sensing of coccolithophore blooms in the Western South atlantic ocean , 1997 .

[49]  John A. Raven,et al.  The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton , 1998 .

[50]  K. Denman,et al.  The structure of pelagic marine ecosystems. , 1978 .

[51]  K. Denman,et al.  Organisation in the pelagic ecosystem , 1977, Helgoländer wissenschaftliche Meeresuntersuchungen.

[52]  D. Vaulot,et al.  Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. , 2007, Environmental microbiology.

[53]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[54]  François-Marie Bréon,et al.  Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery , 2005 .

[55]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[56]  D. Simberloff The Guild Concept and the Structure of Ecological Communities , 1991 .

[57]  Andrew Hansen,et al.  Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean , 2001, Nature.

[58]  S. Doney Major challenges confronting marine biogeochemical modeling , 1999 .

[59]  A. Morel,et al.  Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications , 1989 .

[60]  J. Young,et al.  Coccolithophores : from molecular processes to global impact , 2004 .

[61]  J. Garrido,et al.  Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy , 2004 .

[62]  K. Fauchald The diet of worms : A study of polychaete feeding guilds , 1979 .

[63]  Nicolas Hoepffner,et al.  Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter , 1993 .

[64]  Nicholas R. Bates,et al.  Pelagic functional group modeling: Progress, challenges and prospects , 2006 .

[65]  Trevor Platt,et al.  A two‐component model of phytoplankton absorption in the open ocean: Theory and applications , 2006 .

[66]  A. Basset,et al.  Phytoplankton size structure and environmental forcing within the euphotic zone in the Southern Adriatic–Ionian Coastal Area , 2004 .

[67]  L. Prieur,et al.  An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1 , 1981 .

[68]  W. Balch,et al.  Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery , 2001 .

[69]  W. Sunda,et al.  An antioxidant function for DMSP and DMS in marine algae , 2002, Nature.

[70]  Shubha Sathyendranath,et al.  Variations in the spectral values of specific absorption of phytoplankton , 1987 .

[71]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[72]  J. Steele Marine Functional DiversityOcean and land ecosystems may have different time scales for their responses to change , 1991 .

[73]  Robert J. Olson,et al.  An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot , 2003 .

[74]  B. Greg Mitchell,et al.  Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta , 1991 .

[75]  Lisa R. Moore,et al.  Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus , 2002 .

[76]  S. F. Umani,et al.  Space–time patterns of co‐variation of biodiversity and primary production in phytoplankton guilds of coastal marine environments , 2003 .

[77]  Trevor Platt,et al.  Angular structure of underwater light field: Importance for ocean color models , 1997, Other Conferences.

[78]  T. Platt,et al.  Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland–Labrador Shelf , 2007 .

[79]  P. Tester,et al.  QUANTIFICATION OF THE RELATIVE ABUNDANCE OF THE TOXIC DINOFLAGELLATE, KARENIA BREVIS (DINOPHYTA), USING UNIQUE PHOTOPIGMENTS 1 , 2003 .

[80]  D. Scanlan,et al.  Molecular analysis of photosynthetic picoeukaryote community structure along an Arabian Sea transect , 2006 .

[81]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[82]  P. Tréguer,et al.  Growth physiology and fate of diatoms in the ocean: a review , 2005 .

[83]  T. Platt,et al.  Discrimination of diatoms from other phytoplankton using ocean-colour data , 2004 .

[84]  S. Wright,et al.  Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods , 1997 .

[85]  Scarla J. Weeks,et al.  Anatomy: Photoreceptive net in the mammalian retina , 2002, Nature.

[86]  R. Olson,et al.  A submersible imaging‐in‐flow instrument to analyze nano‐and microplankton: Imaging FlowCytobot , 2007 .

[87]  R. Rivkin,et al.  INFLUENCE OF STORAGE MODE AND DURATION ON THE MICROSCOPIC ENUMERATION OF SYNECHOCOCCUS FROM A COLD COASTAL OCEAN ENVIRONMENT , 1999 .

[88]  Kevin J. Flynn,et al.  Castles built on sand : dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers , 2005 .

[89]  J. Ryther Photosynthesis and fish production in the sea. , 1969, Science.

[90]  U. Riebesell,et al.  Coccolithophores and the biological pump: responses to environmental changes , 2004 .

[91]  A. Jassby,et al.  THE RELATIONSHIP BETWEEN PHOTOSYNTHESIS AND LIGHT FOR NATURAL ASSEMBLAGES OF COASTAL MARINE PHYTOPLANKTON 1 , 1976 .

[92]  Watson W. Gregg,et al.  Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model , 2003 .

[93]  C. Reynolds,et al.  Strategies of marine dinoflagellate survival and some rules of assembly , 2003 .

[94]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[95]  M. Masó,et al.  Phytoplankton functional groups and harmful algae species in anthropogenically impacted waters of the NW Mediterranean Sea , 2005 .

[96]  D. Scanlan,et al.  Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. , 2007, Environmental microbiology.

[97]  T Platt,et al.  Effect of the particle-size distribution on the backscattering ratio in seawater. , 1994, Applied optics.

[98]  W. Balch,et al.  Response of water‐leaving radiance to particulate calcite and chlorophyll a concentrations: A model for Gulf of Maine coccolithophore blooms , 1994 .

[99]  Xiaoping Zhou,et al.  Marine ecology: Spring algal bloom and larval fish survival , 2003, Nature.

[100]  John J. Cullen,et al.  Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient , 2002 .

[101]  G. Hallegraeff,et al.  Tropical phytoplankton species and pigments of continental shelf waters of North and North-West Australia , 1984 .

[102]  Victor Smetacek,et al.  Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1 , 1978 .

[103]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[104]  J. Stoń,et al.  Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron , 2004, Biometals.

[105]  Paul G. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra , 1999 .

[106]  M. Kearney,et al.  Ecologists have already started rebuilding community ecology from functional traits. , 2006, Trends in ecology & evolution.

[107]  Deborah K. Steinberg,et al.  Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. , 2004 .

[108]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[109]  M. S. Finch,et al.  The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 , 1994 .

[110]  Peter Gege,et al.  Characterization of the phytoplankton in Lake Constance for classification by remote sensing , 1998 .

[111]  Thomas R. Anderson,et al.  Plankton functional type modelling : running before we can walk? , 2005 .

[112]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .