Berry–Esseen bounds in the entropic central limit theorem

Berry–Esseen-type bounds for total variation and relative entropy distances to the normal law are established for the sums of non-i.i.d. random variables.

[1]  J. Linnik An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[4]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[5]  Limit Theorems for Densities and Asymptotic Expansions for Distributions of Sums of Independent Random Variables , 1965 .

[6]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[7]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[8]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[9]  C. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .

[10]  S. Kh. Sirazhdinov,et al.  On Convergence in the Mean for Densities , 1962 .

[11]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[12]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[13]  C. Villani Topics in Optimal Transportation , 2003 .

[14]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[15]  A. Barron,et al.  Fisher information inequalities and the central limit theorem , 2001, math/0111020.

[16]  Assaf Naor,et al.  On the rate of convergence in the entropic central limit theorem , 2004 .

[17]  E. Rio Upper bounds for minimal distances in the central limit theorem , 2009 .

[18]  Gennadiy P. Chistyakov,et al.  Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem , 2011, 1104.3994.

[19]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[20]  Bounds for characteristic functions in terms of quantiles and entropy , 2012 .

[21]  Peter Harremoës,et al.  Refinements of Pinsker's inequality , 2003, IEEE Trans. Inf. Theory.

[22]  I. Pinelis,et al.  Estimates of the Moments of Sums of Independent Random Variables , 1985 .

[23]  C. C. Heyde,et al.  Central Limit Theorem , 2006 .

[24]  Yu. P. Studnev A Remark on the Katz-Petrov Theorem , 1965 .

[25]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[26]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[27]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .